【題目】如圖1,拋物線(xiàn)C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線(xiàn)C1的頂點(diǎn)為G.
(1)求出拋物線(xiàn)C1的解析式,并寫(xiě)出點(diǎn)G的坐標(biāo);
(2)如圖2,將拋物線(xiàn)C1向下平移k(k>0)個(gè)單位,得到拋物線(xiàn)C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:
(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn)分別交拋物線(xiàn)C1、C2于P、Q兩點(diǎn),試探究在直線(xiàn)y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫(xiě)出點(diǎn)M,N的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)拋物線(xiàn)C1的解析式為y=﹣x2+2x+3,點(diǎn)G的坐標(biāo)為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【解析】
(1)由點(diǎn)A的坐標(biāo)及OC=3OA得點(diǎn)C坐標(biāo),將A、C坐標(biāo)代入解析式求解可得;
(2)設(shè)拋物線(xiàn)C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點(diǎn)D,設(shè)BD′=m,由等邊三角形性質(zhì)知點(diǎn)B′的坐標(biāo)為(m+1,0),點(diǎn)G′的坐標(biāo)為(1,m),代入所設(shè)解析式求解可得;
(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根據(jù)PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長(zhǎng)PQ交直線(xiàn)y=﹣1于點(diǎn)H,證△OQM≌△QNH,根據(jù)對(duì)應(yīng)邊相等建立關(guān)于x的方程,解之求得x的值從而進(jìn)一步求解即可.
(1)∵點(diǎn)A的坐標(biāo)為(﹣1,0),
∴OA=1,
∴OC=3OA,
∴點(diǎn)C的坐標(biāo)為(0,3),
將A、C坐標(biāo)代入y=ax2﹣2ax+c,得:,
解得:,
∴拋物線(xiàn)C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,
所以點(diǎn)G的坐標(biāo)為(1,4);
(2)設(shè)拋物線(xiàn)C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,
過(guò)點(diǎn)G′作G′D⊥x軸于點(diǎn)D,設(shè)BD′=m,
∵△A′B′G′為等邊三角形,
∴G′D=B′D=m,
則點(diǎn)B′的坐標(biāo)為(m+1,0),點(diǎn)G′的坐標(biāo)為(1,m),
將點(diǎn)B′、G′的坐標(biāo)代入y=﹣(x﹣1)2+4﹣k,得:
,
解得:(舍),,
∴k=1;
(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),
∴PQ=OA=1,
∵∠AOQ、∠PQN均為鈍角,
∴△AOQ≌△PQN,
如圖2,延長(zhǎng)PQ交直線(xiàn)y=﹣1于點(diǎn)H,
則∠QHN=∠OMQ=90°,
又∵△AOQ≌△PQN,
∴OQ=QN,∠AOQ=∠PQN,
∴∠MOQ=∠HQN,
∴△OQM≌△QNH(AAS),
∴OM=QH,即x=﹣x2+2x+2+1,
解得:x=(負(fù)值舍去),
當(dāng)x=時(shí),HN=QM=﹣x2+2x+2=,點(diǎn)M(,0),
∴點(diǎn)N坐標(biāo)為(+,﹣1),即(,﹣1);
或(﹣,﹣1),即(1,﹣1);
如圖3,
同理可得△OQM≌△PNH,
∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,
解得:x=﹣1(舍)或x=4,
當(dāng)x=4時(shí),點(diǎn)M的坐標(biāo)為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,
∴點(diǎn)N的坐標(biāo)為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);
綜上點(diǎn)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=10cm,AD=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度向點(diǎn)終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC以1cm/s的速度向點(diǎn)終點(diǎn)C運(yùn)動(dòng),它們到達(dá)終點(diǎn)后停止運(yùn)動(dòng).
(1)幾秒后,點(diǎn)P、D的距離是點(diǎn)P、Q的距離的2倍;
(2)幾秒后,△DPQ的面積是24cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過(guò)點(diǎn)A(2,m).
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)B在軸的上,且OA=BA,反比例函數(shù)圖像上有一點(diǎn)C,且∠ABC=90°,求點(diǎn)C坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+k+1的圖象與一次函數(shù)y=﹣x+4的圖象交于點(diǎn)A(1,a).
(1)求a、k的值;
(2)根據(jù)圖象,寫(xiě)出不等式﹣x+4>kx+k+1的解;
(3)結(jié)合圖形,當(dāng)x>2時(shí),求一次函數(shù)y=﹣x+4函數(shù)值y的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)12噸(含12噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)12噸,超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi),小黃家1月份用水24噸,交水費(fèi)42元.2月份用水20噸,交水費(fèi)32元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)調(diào)節(jié)價(jià)分別是多少元;
(2)設(shè)每月用水量為噸,應(yīng)交水費(fèi)為元,寫(xiě)出與之間的函數(shù)關(guān)系式;
(3)小黃家3月份用水26噸,他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:兩個(gè)二次項(xiàng)系數(shù)之和為1,對(duì)稱(chēng)軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:的友好同軸二次函數(shù)為.
請(qǐng)你分別寫(xiě)出,的友好同軸二次函數(shù);
滿(mǎn)足什么條件的二次函數(shù)沒(méi)有友好同軸二次函數(shù)?滿(mǎn)足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù):與其友好同軸二次函數(shù)都與y軸交于點(diǎn)A,點(diǎn)B、C分別在、上,點(diǎn)B,C的橫坐標(biāo)均為,它們關(guān)于的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)分別為,,連結(jié),,,CB.
若,且四邊形為正方形,求m的值;
若,且四邊形的鄰邊之比為1:2,直接寫(xiě)出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)L1:y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,在L1上任取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)l⊥x軸,垂足為D,將L1沿直線(xiàn)l翻折得到拋物線(xiàn)L2,交x軸于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).
(1)當(dāng)L1與L2重合時(shí),求點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),求此時(shí)L2的解析式;并直接寫(xiě)出L1與L2中,y均隨x的增大而減小時(shí)的x的取值范圍;
(3)連接PM,PB,設(shè)點(diǎn)P(m,n),當(dāng)n= m時(shí),求△PMB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小賢與小杰在探究某類(lèi)二次函數(shù)問(wèn)題時(shí),經(jīng)歷了如下過(guò)程:
求解體驗(yàn)
(1)已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)(-1,0),則= ,頂點(diǎn)坐標(biāo)為 ,該拋物線(xiàn)關(guān)于點(diǎn)(0,1)成中心對(duì)稱(chēng)的拋物線(xiàn)的表達(dá)式是 .
抽象感悟
我們定義:對(duì)于拋物線(xiàn),以軸上的點(diǎn)為中心,作該拋物線(xiàn)關(guān)于
點(diǎn)對(duì)稱(chēng)的拋物線(xiàn) ,則我們又稱(chēng)拋物線(xiàn)為拋物線(xiàn)的“衍生拋物線(xiàn)”,點(diǎn)為“衍生中心”.
(2)已知拋物線(xiàn)關(guān)于點(diǎn)的衍生拋物線(xiàn)為,若這兩條拋物線(xiàn)有交點(diǎn),求的取值范圍.
問(wèn)題解決
(3) 已知拋物線(xiàn)
①若拋物線(xiàn)的衍生拋物線(xiàn)為,兩拋物線(xiàn)有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求的值及衍生中心的坐標(biāo);
②若拋物線(xiàn)關(guān)于點(diǎn)的衍生拋物線(xiàn)為 ,其頂點(diǎn)為;關(guān)于點(diǎn)的衍生拋物線(xiàn)為,其頂點(diǎn)為;…;關(guān)于點(diǎn)的衍生拋物線(xiàn)為,其頂點(diǎn)為;…(為
正整數(shù)).求的長(zhǎng)(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù),,是常數(shù),且中的與的部分對(duì)應(yīng)值如下表所示,則下列結(jié)論中,正確的個(gè)數(shù)有( )
;當(dāng)時(shí),;當(dāng)時(shí),的值隨值的增大而減。
方程有兩個(gè)不相等的實(shí)數(shù)根.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com