【題目】某玩具店用2000元購進一批玩具,面市后,供不應求,于是店主又購進同樣的玩具,所購的數(shù)量是第一批數(shù)量的3倍,但每件進價貴了4元,結(jié)果購進第二批玩具共用了6300.若兩批玩具的售價都是每件120元,且兩批玩具全部售完.

1)第一次購進了多少件玩具?

2)求該玩具店銷售這兩批玩具共盈利多少元?

【答案】(1)第一次購進了25件玩具;(2)該玩具店銷售這兩批玩具共盈利3700元.

【解析】

(1)設第一次購進x件玩具,第二次購進3x件玩具,列出方程解出即可.

(2)用總售價減去總進價即可算出.

(1)設第一次購進了件玩具,則第二次購進了件玩具,

根據(jù)題意得:,

解得:,

經(jīng)檢驗,是原分式方程的解,

答:第一次購進了25件玩具.

(2)(元)

答:該玩具店銷售這兩批玩具共盈利3700元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.

(2)P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點Px軸的垂線,垂足為F,交直線AB于點E,作PDAB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線y=x2+x﹣x軸交于A、B兩點(點A在點B的左側(cè))與y軸交于點C,直線BEBC與點B,與拋物線的另一交點為E.

(1)如圖1,求點E的坐標;

(2)如圖2,若點Px軸下方拋物線上一動點,過PPGBE與點G,當PG長度最大時,在直線BE上找一點M,使得△APM的周長最小,并求出周長的最小值.

(3)如圖3,將△BOC在射線BE上,設平移后的三角形為△B′O′C′,B′在射線BE上,若直線B′C′分別與x軸、拋物線的對稱軸交于點R、T,當△O′RT為等腰三角形時,求R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標為(1,0),則下列結(jié)論:①AB=4②b2﹣4ac0③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是雙曲線y=上的一個動點,連結(jié)OP,若將線段OP繞點O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點Q的雙曲線的表達式為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點A,點A的縱坐標為4,反比例函數(shù)y=的圖象也經(jīng)過點A,第一象限內(nèi)的點B在這個反比例函數(shù)的圖象上,過點BBCx軸,交y軸于點C,且AC=AB.求:

(1)這個反比例函數(shù)的解析式;

(2)直線AB的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx的頂點M(,3)關(guān)于x軸的對稱點為B,點A為拋物線與x軸的一個交點,點A關(guān)于原點O的對稱點為A′;已知C為A′B的中點,P為拋物線上一動點,作CDx軸,PEx軸,垂足分別為D,E.

(1)求點A的坐標及拋物線的解析式;

(2)當0<x<2時,是否存在點P使以點C,D,P,E為頂點的四邊形是平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷,在一次購物中,張華和李紅都想從微信、支付寶、銀行卡、現(xiàn)金四種支付方式中選一種方式進行支付.

(1)張華用微信支付的概率是______

(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中微信支付寶、銀行卡現(xiàn)金分別用字母“A”“B”“C”“D”代替)

查看答案和解析>>

同步練習冊答案