【題目】已知(x2+mx+1)(x2﹣2x+n)的展開式中不含x2x3項.

(1)分別求m、n的值;

(2)化簡求值:(m+2n+1)(m+2n﹣1)+(2m2n﹣4mn2+m3)÷(﹣m)

【答案】(1)m的值為2,n的值為3;(2)2mn+8n2﹣1;83.

【解析】

(1)先將題目中的式子化簡,然后根據(jù)的展開式中不含項,可以求得m、n的值;
(2)先化簡題目中的式子,然后將m、n的值代入化簡后的式子即可解答本題.

解:(1)

=﹣2+n+m﹣2m+mnx+﹣2x+n

=+(﹣2+m)+(n﹣2m+1)+(mn﹣2)x+n,

的展開式中不含

,解得 ,

m的值為2,n的值為3;

(2)(m+2n+1)(m+2n﹣1)+(2n﹣4m+)÷(﹣m)

=[(m+2n)+1][(m+2n)﹣1]﹣2mn+4

=﹣1﹣2mn+4

=+4mn+4﹣1﹣2mn+4

=2mn+8﹣1,

當(dāng)m=2,n=3時,

原式=2×2×3+8×﹣1=83.

故答案為:(1)m的值為2,n的值為3;(2)2mn+8﹣1;83.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN

求證:

分別寫出點M在如圖2和圖3所示位置時,線段ABBM、BN三者之間的數(shù)量關(guān)系不需證明

如圖4,當(dāng)時,證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOCBOD都是直角,BOC=65°

(1)求AOD的度數(shù);

(2)∠AOBDOC有何大小關(guān)系?

(3)若不知道BOC的具體度數(shù),其他條件不變,(2)的關(guān)系仍成立嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠CAEAF.有以下結(jié)論:①EMFN;②CDDN;③∠FAN∠EAM;④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

1)根據(jù)以上規(guī)律,則(x1)(x6+x5+x4+x3+x2+x+1)=   ;

2)你能否由此歸納出一般規(guī)律(x1)(xn+xn1+……+x+1)=   

3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+mx+m﹣2=0.
(1)求證:無論m取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=﹣3x1x2 , 求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,DAB邊上的一動點,以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△ACE≌△BCD;

(2)判斷AEBC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點M旋轉(zhuǎn)后的對應(yīng)點為M′,當(dāng)AM′+DM取得最小值時,點M的坐標(biāo)為( )

A.(0,
B.(0,
C.(0,
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AB=AC,BDACD,CEABEBD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

同步練習(xí)冊答案