【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.

求證:(1)四邊形AECF是平行四邊形。(2)EFGH互相平分。

【答案】見解析

【解析】

(1)根據(jù)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì)可得:,,

根據(jù),利用平行四邊形的判定定理可得:四邊形AECF是平行四邊形,

得四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得:,

根據(jù),,,可得:,,根據(jù)平行四邊形的判定定理可得:四邊形BFDE是平行四邊形,再根據(jù)平行四邊形的性質(zhì)可得:,根據(jù)平行四邊形的判定定理可得:四邊形EGFH是平行四邊形,由平行四邊形的性質(zhì)可得:

GH互相平分.

四邊形ABCD是平行四邊形,

,,

,

四邊形AECF是平行四邊形,

:四邊形AECF是平行四邊形,

,

,,,

,,

四邊形BFDE是平行四邊形,

,

四邊形EGFH是平行四邊形,

GH互相平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)政府提出的綠色發(fā)展·低碳出行號(hào)召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費(fèi)用相同,購買5輛男式單車與4輛女式單車共需16 000元.

(1)求男式單車和女式單車的單價(jià);

(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費(fèi)用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MN是⊙O的切線,B為切點(diǎn),BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點(diǎn),過C作CE⊥BD于點(diǎn)E.、

(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在乘法公式的學(xué)習(xí)中,我們采用了構(gòu)造幾何圖形的方法研究問題,借助直觀、形象的幾何模型,加深對(duì)乘法公式的認(rèn)識(shí)和理解,從中感悟數(shù)形結(jié)合的思想方法,感悟幾何與代數(shù)內(nèi)在的統(tǒng)一性,根據(jù)課堂學(xué)習(xí)的經(jīng)驗(yàn),解決下列問題:

1)如圖①邊長為(x+3)的正方形紙片,剪去一個(gè)邊長為x的正方形之后,剩余部分可拼剪成一個(gè)長方形(不重疊無縫隙),則這個(gè)長方形的面積為   (用含x的式子表示).

2)如果你有5張邊長為a的正方形紙,4張長、寬分別為a、bab)的長方形紙片,3張邊長為b正方形紙片.現(xiàn)從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(不重疊無縫隙),則拼成的正方形的邊長最長可以為   

Aa+b;Ba+2b;Ca+3b;D.2a+b

31個(gè)大正方形和4個(gè)大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個(gè)小正方形覆蓋部分的面積.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BCE,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過點(diǎn)A作AFBC交BE的延長線于點(diǎn)F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,已知點(diǎn)A(-5,0),B(5,0),D(2,7).

(1)若點(diǎn)C為AD與y軸的交點(diǎn),求C點(diǎn)的坐標(biāo);【提示:設(shè)C點(diǎn)的坐標(biāo)為(0,x)】

(2)動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QC點(diǎn)出發(fā),也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng).(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng),如圖②所示).設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.

①請(qǐng)用含x的代數(shù)式分別表示P、Q兩點(diǎn)的坐標(biāo);

②當(dāng)x=2時(shí),y軸上是否存在一點(diǎn)E,使得△AQE的面積與△APQ的面積相等?若存在,求E點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( )
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3

查看答案和解析>>

同步練習(xí)冊(cè)答案