【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過(guò)點(diǎn)A作AFBC交BE的延長(zhǎng)線于點(diǎn)F

1求證:AEFDEB

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

【答案】1證明詳見(jiàn)解析;2證明詳見(jiàn)解析;310

【解析】

試題1DBE=AFE,BED=FEAED=EA,根據(jù)AAS證得BDE≌△FAEAAS;

2由全等可得AF=BD,即AF=DC,根據(jù)一組對(duì)邊平行且相等的四邊形的平行四邊形證得四邊形ADCF是平行四邊形,又鄰邊AD=DC,所以四邊形四邊形ADCF是菱形;

3解法一:連接DF,證得四邊形ABDF是平行四邊形,從而得到對(duì)角線DF的長(zhǎng),利用菱形的對(duì)角線長(zhǎng)求面積;

解法二:利用RtABC的面積求得BC邊上的高,即得到菱形ADCF中DC邊上的高,利用平行四邊形的面積公式求菱形的面積

試題解析:1證明:在RtABC中,BAC=,D是BC的中點(diǎn),

AD=BC=DC=BD,

AFBC,

DBE=AFE,

E是AD中點(diǎn)

ED=EA

BED=FEA,

∴△BDE≌△FAEAAS;

2證明:由1知AF=BD即AF=DC,

AFDC,AF=DC,

四邊形ADCF是平行四邊形,

AD=DC

四邊形ADCF是菱形;

3解:解法一連接DF,

AFDC,BD=CD,

AFBD

四邊形ABDF是平行四邊形,

DF=AB=5,

;

解法二在RtABC中,AC=4,AB=5,

BC=

設(shè)BC邊上的高為,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200m,從飛機(jī)上看地平面指揮臺(tái)B的俯角α=16°31′,則飛機(jī)A與指揮臺(tái)B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DECE,分別交于H、G.

求證:(1)四邊形AECF是平行四邊形。(2)EFGH互相平分。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

2018年10月24日港珠澳大橋正式開(kāi)通,它是中國(guó)建設(shè)史上里程最長(zhǎng)、投資最多、施工難度最大的跨海橋梁項(xiàng)目,體現(xiàn)了我國(guó)逢山開(kāi)路、遇水架橋的奮斗精神,體現(xiàn)了我國(guó)綜合國(guó)力、自主創(chuàng)新能力,體現(xiàn)了我國(guó)勇創(chuàng)世界一流的民族志氣. 港珠澳大橋全長(zhǎng)55公里,跨越伶仃洋,東接香港特別行政區(qū),西接廣東省珠海市和澳門(mén)特別行政區(qū),首次實(shí)現(xiàn)了珠海、澳門(mén)與香港的跨海陸路連接,極大地縮短了三地間的距離. 通車(chē)前,小亮媽媽駕車(chē)從香港到珠海的陸路車(chē)程大約220公里,如果行駛的平均速度不變,港珠澳大橋通車(chē)后,小亮媽媽駕車(chē)從香港到珠海所用的行駛時(shí)間比原來(lái)縮短了2小時(shí)15分鐘,求小亮媽媽原來(lái)駕車(chē)從香港到珠海需要多長(zhǎng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某項(xiàng)針對(duì)18~35歲的青年人每天發(fā)微博數(shù)量的調(diào)查中,設(shè)一個(gè)人的“日均發(fā)微博條數(shù)”為m,規(guī)定:當(dāng)m≥10時(shí)為A級(jí),5≤m<10時(shí)為B級(jí),當(dāng)0≤m<5為C級(jí).現(xiàn)隨機(jī)抽取30個(gè)符合年齡條件的青年人開(kāi)展“每人日均發(fā)微博條數(shù)”的調(diào)查,所有抽青年人的“日均發(fā)微博條數(shù)”的數(shù)據(jù)如表:

11

10

6

15

9

16

13

12

0

8

2

8

10

17

6

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)求樣本數(shù)據(jù)中為A級(jí)的頻率;
(2)試估計(jì)1000個(gè)18~35歲的青年人中“日均發(fā)微博條數(shù)”為A級(jí)的人數(shù);
(3)從樣本數(shù)據(jù)為C級(jí)的人中隨機(jī)抽取兩人,用列舉法求抽得兩個(gè)人的“日均發(fā)微博條數(shù)”都是3的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的三個(gè)頂點(diǎn)A(0,10),B(8,10),C(8,0),過(guò)O、C兩點(diǎn)的拋物線y=ax2+bx+c與線段AB交于點(diǎn)D,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.

(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.請(qǐng)問(wèn)當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形?
(3)若點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M、N、C、E為頂點(diǎn)四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以A(2,0),B(0,t)為頂點(diǎn)作等腰直角△ABC(其中∠ABC=90°,且點(diǎn)C落在第一象限內(nèi)),則點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)C’的坐標(biāo)為___.(用t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,點(diǎn)D,E分別在AC,BC上,且AD=CE,AE與BD相交于點(diǎn)P,BF⊥AE于點(diǎn)F.若PF=2,則BP=( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案