【題目】x、y是有理數(shù),設(shè)N=3x2+2y218x+8y+35,則N

A. 一定是負(fù)數(shù) B. 一定不是負(fù)數(shù) C. 一定是正數(shù) D. N的取值與xy的取值有關(guān)

【答案】B

【解析】

N的式子進(jìn)行化簡(jiǎn),得出3(x-3)2+2(y+2)2,是兩個(gè)非負(fù)數(shù)的和,所以N仍為非負(fù)數(shù).

解:N=3x2+2y2-18x+8y+35,
=3x2-18x+2y2+8y+35
=3(x-3)2-27+2(y+2)2-8+35
=3(x-3)2+2(y+2)2≥0.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,且

)求證:

)若,,中點(diǎn),,分別交于點(diǎn)

①判斷線段相等嗎?請(qǐng)說明理由.

②求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑的O與AB邊交于點(diǎn)D,過點(diǎn)D作O的切線,交BC于點(diǎn)E.

(1)求證:EB=EC;

(2)若以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是正方形,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的數(shù)分別為13、5點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是﹣2,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P1點(diǎn)P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為P2,點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為P3,點(diǎn)P3關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P4,P1P2016的長(zhǎng)度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC,AB=BC=8cmABC=90°,點(diǎn)E以每秒1cm/s的速度由A向點(diǎn)B運(yùn)動(dòng)EDAC于點(diǎn)D,點(diǎn)MEC的中點(diǎn)

1)求證BMD為等腰直角三角形

2)當(dāng)點(diǎn)E運(yùn)動(dòng)多少秒時(shí),BMD的面積為12.5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左邊到右邊的變形,因式分解正確的是(

A. 2a2﹣2=2(a+1)(a﹣1) B. (a+3)(a﹣3)=a2﹣9

C. ﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3) D. x2﹣2x﹣3=x(x﹣2)﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多項(xiàng)式a2+ka+1是一個(gè)完全平方式,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠C=∠DOD=OC.求證:DE=CE

【答案】證明見解析

【解析】試題分析:利用ASA證明△OBC≌△OAD,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得OA=OB再由OD=OC,即可得AC=BD,根據(jù)AAS證明△ACE≌△BDE,再由全等三角形的對(duì)應(yīng)邊相等即可得結(jié)論.

試題解析:

在△OBC和△OAD中,

∴△OBC≌△OADASA),

OA=OB,

OD=OC,

OD﹣OB=OC﹣OA,即AC=BD,

在△ACE和△BDE中,

,

∴△ACE≌△BDEAAS),

DE=CE

型】解答
結(jié)束】
27

【題目】如圖,以等腰直角三角形ABC的斜邊AB為邊向內(nèi)作等邊△ABD,連接DC,以DC為邊,作等邊△DCE,點(diǎn)B、ECD的同側(cè).

1)求∠BCE的大。

2)求證:BE=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,兩點(diǎn).

(1)求m、k、b的值;

(2)連接OA、OB,計(jì)算三角形OAB的面積;

(3)結(jié)合圖象直接寫出不等式的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案