【題目】如圖將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得矩形,若,,則圖中陰影部分的面積為__________.
【答案】
【解析】
連接BD,BF,根據(jù)S陰影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE即可得出答案.
如圖,連接BD,BF,
在矩形ABCD中,∠A=90°,AB=3,AD=BC=2,
∴BD=,S矩形ABCD=AB×BC=3×2=6
∵矩形BEFG是由矩形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到的
∴BF=BD=,∠DBF=90°,∠CBE=90°,S矩形BEFG= S矩形ABCD=6
則S陰影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE
=S矩形ABCD+ S扇形BDF+S矩形BEFG -S矩形ABCD-S扇形BCE
=
=
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC邊上一點(diǎn),且DA=DB,O是AB的中點(diǎn),CE是△BCD的中線(xiàn).
(1)如圖a,連接OC,請(qǐng)直接寫(xiě)出∠OCE和∠OAC的數(shù)量關(guān)系: ;
(2)點(diǎn)M是射線(xiàn)EC上的一個(gè)動(dòng)點(diǎn),將射線(xiàn)OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線(xiàn)ON,使∠MON=∠ADB,ON與射線(xiàn)CA交于點(diǎn)N.
①如圖b,猜想并證明線(xiàn)段OM和線(xiàn)段ON之間的數(shù)量關(guān)系;
②若∠BAC=30°,BC=m,當(dāng)∠AON=15°時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段ME的長(zhǎng)度(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)、 點(diǎn)分別在線(xiàn)段和線(xiàn)段上, 平分.
如圖1,求證:.
如圖2,若.求證:.
在問(wèn)的條件下,如圖3, 在線(xiàn)段上取一點(diǎn),使.過(guò)點(diǎn)作交于點(diǎn),作交于點(diǎn),連接,交于點(diǎn),連接,交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,拋物線(xiàn)頂點(diǎn)為H(1,2).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為直線(xiàn)AD上方拋物線(xiàn)的對(duì)稱(chēng)軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;
(3)若點(diǎn)E為拋物線(xiàn)上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
如果函數(shù) y=f(x)滿(mǎn)足:對(duì)于自變量 x 的取值范圍內(nèi)的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),則稱(chēng) f(x)是增函數(shù);
(2)若 x1<x2,都有 f(x1)>f(x2),則稱(chēng) f(x)是減函數(shù).
例題:證明函數(shù)f(x)= (x>0)是減函數(shù).
證明:設(shè) 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函數(shù) f(x)= (x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問(wèn)題:
已知函數(shù).
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)計(jì)算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函數(shù)是 函數(shù)(填“增”或“減”);
(3)請(qǐng)仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“低碳生活,綠色出行”理念的普及,新能源汽車(chē)正逐漸成為人們喜愛(ài)的交通工具.某汽車(chē)銷(xiāo)售公司計(jì)劃購(gòu)進(jìn)一批新能源汽車(chē)嘗試進(jìn)行銷(xiāo)售,據(jù)了解2輛A型汽車(chē)、3輛B型汽氣車(chē)的進(jìn)價(jià)共計(jì)80萬(wàn)元;3輛A型汽車(chē)、2輛B型汽車(chē)的進(jìn)價(jià)共計(jì)95萬(wàn)元。
(1)求A、B兩種型號(hào)的汽車(chē)每輛進(jìn)價(jià)分別為多少方元?
(2)若該公司計(jì)劃正好用200萬(wàn)元購(gòu)進(jìn)以上兩種型號(hào)的新能源汽車(chē)(兩種型號(hào)的汽車(chē)均購(gòu)買(mǎi)),請(qǐng)你幫助該公司設(shè)計(jì)購(gòu)買(mǎi)方案;
(3)若該汽車(chē)銷(xiāo)售公司銷(xiāo)售1輛A型汽車(chē)可獲利8000元,銷(xiāo)售1輛B型汽車(chē)可獲利5000元,在(2)中的購(gòu)買(mǎi)方案中,假如這些新能源汽車(chē)全部售出,哪種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與直線(xiàn)交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,已知A(0,3),C(3,0).(1)拋物線(xiàn)的解析式__;(2)設(shè)E為線(xiàn)段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線(xiàn)段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線(xiàn)段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止.若使點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,則點(diǎn)E的坐標(biāo)__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“分組合作學(xué)習(xí)”成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)“分組合作學(xué)習(xí)”實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:
分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣
請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為 ;
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;
(3)通過(guò)“分組合作學(xué)習(xí)”前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)“分組合作學(xué)習(xí)”這項(xiàng)舉措的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為.
(1)求此拋物線(xiàn)的表達(dá)式;
(2)過(guò)點(diǎn)作軸,垂足為點(diǎn),交于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)點(diǎn)作,垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線(xiàn)段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com