【題目】分組合作學(xué)習(xí)成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)分組合作學(xué)習(xí)實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:

分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣

請(qǐng)結(jié)合圖中信息解答下列問題:

1)求出分組前學(xué)生學(xué)習(xí)興趣為的所占的百分比為 ;

2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;

3)通過分組合作學(xué)習(xí)前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)分組合作學(xué)習(xí)這項(xiàng)舉措的看法.

【答案】130%;(2)見解析;(3)有300人,分組合作學(xué)習(xí)大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.

【解析】

1)用1減去扇形統(tǒng)計(jì)圖中其它三項(xiàng)所占百分比即得答案;

2)用抽取的100人減去條形統(tǒng)計(jì)圖中其它三項(xiàng)的人數(shù)可得分組后學(xué)生學(xué)習(xí)興趣為的人數(shù),進(jìn)而可補(bǔ)全條形統(tǒng)計(jì)圖;

3)先求出100人中學(xué)習(xí)興趣獲得提高的學(xué)生所占的百分比,再乘以2000即可.

解:(1125%25%20%=30%,

故答案為:30%;

210030355=30(人),分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖如下:

3)分組前學(xué)生學(xué)習(xí)興趣為的有100×25%=25(人),分組后提高了3025=5(人);

分組前學(xué)生學(xué)習(xí)興趣為的有100×30%=30(人),分組后提高了3530=5(人);

分組前學(xué)生學(xué)習(xí)興趣為極高的有100×25%=25(人),分組后提高了3025=5(人),

2000×=300(人).

答:全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有300人,分組合作學(xué)習(xí)大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.

1)求證:△ABC∽△CBD;

2)如果AC=4,BC=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得矩形,若,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線的頂點(diǎn)在拋物線上,同時(shí),拋物線的頂點(diǎn)在拋物線上,那么我們稱拋物線關(guān)聯(lián).

1)已知拋物線,請(qǐng)判斷拋物線 與拋物線是否關(guān)聯(lián),并說明理由.

2)拋物線,動(dòng)點(diǎn)的坐標(biāo)為,將拋物線繞點(diǎn)旋轉(zhuǎn)180°得到拋物線,若拋物線關(guān)聯(lián),求拋物線的解析式.

3)點(diǎn)為拋物線的頂點(diǎn),點(diǎn)為拋物線關(guān)聯(lián)的拋物線的頂點(diǎn),是否存在以為斜邊的等腰直角三角形ABC,使其直角頂點(diǎn)在直線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有( 。

(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4x軸無交點(diǎn);(4)、等腰三角形兩邊長為6cm4cm,則它的周長是16cm.

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點(diǎn),將ABE沿直線AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF18°,則∠DCF_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)M為頂點(diǎn),連接OM,若yx的部分對(duì)應(yīng)值如表所示:

x

1

0

3

y

0

0

1)求拋物線的解析式;

2)拋物線與y軸交于點(diǎn)C,點(diǎn)Q是直線BC下方拋物線上一點(diǎn),點(diǎn)Q的橫坐標(biāo)為xQ.若SBCQSBOC,求xQ的取值范圍;

3)如圖2,平移此拋物線使其頂點(diǎn)為坐標(biāo)原點(diǎn),P0,﹣1)為y軸上一點(diǎn),E為拋物線上y軸左側(cè)的一個(gè)動(dòng)點(diǎn),從E點(diǎn)發(fā)出的光線沿EP方向經(jīng)過y軸上反射后與此拋物線交于另一點(diǎn)F.則當(dāng)E點(diǎn)位置變化時(shí),直線EF是否經(jīng)過某個(gè)定點(diǎn)?如果是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校美術(shù)組要購買鉛筆和橡皮,按照商店規(guī)定,若同時(shí)購買60支鉛筆和30塊橡皮,則需按零售價(jià)購買,共需支付30元;若同時(shí)購買90支鉛筆和60塊橡皮,則可按批發(fā)價(jià)購買,共需支付40.5.已知每支鉛筆的批發(fā)價(jià)比零售價(jià)低0.05元,每塊橡皮的批發(fā)價(jià)比零售價(jià)低0.10.求每支鉛筆和每塊橡皮的批發(fā)價(jià)各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

74.579.5

2

0.05

79.584.5

m

0.2

84.589.5

12

0.3

89.594.5

14

n

94.599.5

4

0.1

(1)表中m__________,n____________;

(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)直方圖;

(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測(cè)他的成績落在_________分?jǐn)?shù)段內(nèi);

(4)選拔賽中,成績?cè)?/span>94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案