【題目】如圖(1),在豫西南鄧州市大十字街西南方,聳立著一座古老建筑-福勝寺梵塔,建于北宋天圣十年(公元1032年),學完了三角函數(shù)知識后,某校數(shù)學社團的劉明和王華決定用自己學到的知識測量福勝寺梵塔的高度.如圖(2),劉明在點C處測得塔頂B的仰角為45°,王華在高臺上的點D處測得塔頂B的仰角為40°,若高臺DE高為5米,點D到點C的水平距離EC1.3米,且A、CE三點共線,求該塔AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77tan40°≈0.84,結(jié)果保留整數(shù))

【答案】38

【解析】

DMABM,交CBF,CGDMG,根據(jù)矩形的性質(zhì)得到CG=DE=5DG=EC=1.3,設FM=x米,根據(jù)正切的定義用x表示出DM、BM,結(jié)合圖形列出方程,解方程得到答案.

解:如圖,作DM⊥ABM,交CBFCG⊥DMG,則四邊形DECG為矩形,

∴CGDE5,DGEC1.3

FMx米,由題意得,∠BDM40°,∠BFM∠BCA45°

∴∠CFG45°,BMFMx,

∴GFGC5,

∴DFDG+GF5+1.36.3

Rt△BDM中,tan∠BDM

∴DM,

由題意得,DMDFFM,即,

解得,x≈33.2,則BABM+AM38.2≈38(米),

答:該塔AB的高度約為38米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,EF分別是AB,AD邊上的動點,BEAF,∠BAD120°,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③∠AGE=∠AFC;④若AF1,則 其中正確結(jié)論的序號有________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,過軸于點.點為反比例函數(shù)圖象上的一動點,過點軸于點,連接.直線軸的負半軸交于點

1)求反比例函數(shù)的表達式;

2)若,求的面積;

3)是否存在點,使得四邊形為平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點B、C,經(jīng)過BC兩點的拋物線軸的另一個交點為A,頂點為P,且對稱軸為直線。點G是拋物線位于直線下方的任意一點,連接PB、GBGC、AC .

1)求該拋物線的解析式;

2)求GBC面積的最大值;

3)連接AC,在軸上是否存在一點Q,使得以點P,BQ為頂點的三角形與ABC相似?若存在,求出點Q的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

材料一:對實數(shù)ab,定義的含義為:當時,;當時,.例如:;

材料二:關(guān)于數(shù)學家高斯的故事,200多年前,高斯的算術(shù)老師提出了下面的問:據(jù)說,當其他同學忙于把100個數(shù)逐項相加時,十歲的高斯卻用下面的方法迅速算出了正確答案:.也可以這樣理解:令①,則②,①+②:,即

根據(jù)以上材料,回答下列問題:

1)已知,且,求的值;

2)已知,且,化簡:;

3)對于正數(shù)m,有,求+的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊△ABC,頂點B(0,0),C(2,0),規(guī)定把△ABC先沿x軸繞著點C順時針旋轉(zhuǎn),使點A落在x軸上 ,稱為一次變換,再沿x軸繞著點A順時針旋轉(zhuǎn),使點B落在x軸上 ,稱為二次變換,……經(jīng)過連續(xù)2017次變換后,頂點A的坐標是:

A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, AB O 的直徑, C 的中點, CE AB E , BD CE F

1)求證: CF=BF

2)若 CD=6 ,AC=8 ,求 BE 、 CF 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.如圖,5×5正方形方格紙圖中,點AB都在格點處.

(1)請在圖中作等腰△ABC,使其底邊AC2,且點C為格點;

(2)(1)的條件下,作出平行四邊形ABDC,且D為格點,并直接寫出平行四邊形ABDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年,國家衛(wèi)生健康委員會和國家教育部在全國開展了兒童青少年近視調(diào)查工作,調(diào)查數(shù)據(jù)顯示,全國兒童青少年近視過半.某校初三學習小組為了解本校學生對自己視力保護的重視程度,隨機在校內(nèi)調(diào)查了部分學生,調(diào)查結(jié)果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結(jié)果繪制成下面的兩幅不完整的統(tǒng)計圖:

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)該校共有學生1000人,請你估計該校對視力保護“非常重視”的學生人數(shù);

3)對視力“非常重視”的4人有,兩名男生,兩名女生,若從中隨機抽取兩人向全校作視力保護交流,請利用樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

同步練習冊答案