【題目】如圖,已知在△ABC中,AB=AC,BC在直線MN上.
(1)根據(jù)下列要求補(bǔ)完整圖形,
①畫出△ABC關(guān)于直線MN對稱的三角形A′BC;
②在線段BC上取兩點(diǎn)D、E(,),使BD=CE,連接AD、AE、A′D、A′E;
(2)求證:四邊形ADA′E是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是﹣2,
求:(1)一次函數(shù)的解析式;
(2)△AOB的面積;
(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌的飲水機(jī)的運(yùn)作程序:開機(jī)后,20℃的水經(jīng)過熱交換器吸收熱能,以每分鐘上升6℃的速度加熱到80℃,再進(jìn)入開水器,以每分鐘上升10℃的速度從80℃加熱到100℃,停止加熱,水溫下降,此時(shí)水溫與開機(jī)后用時(shí)成反比例關(guān)系,直至水溫降至20℃,開機(jī)后進(jìn)入此程序的整個(gè)過程中,水溫y(℃)與開機(jī)后用時(shí)x(min)之間的函數(shù)圖象如圖所示,求在這個(gè)過程中:
(1)水溫第一次達(dá)到80℃的時(shí)間;
(2)經(jīng)過熱交換器過程中,y關(guān)于x的函數(shù)表達(dá)式與水溫下降過程中,y關(guān)于x的函數(shù)表達(dá)式;
(3)水溫不低于20℃且不超過50℃的時(shí)間段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(6,0),B(0,8),點(diǎn)C在OB上運(yùn)動,過點(diǎn)C作CE⊥AB于點(diǎn)E;D是x軸上一點(diǎn),作菱形CDEF,當(dāng)頂點(diǎn)F恰好落在y軸正半軸上時(shí),點(diǎn)C的縱坐標(biāo)的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中AB=5,AD=3,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至矩形EFCG(其中A、B、D分別與E、F、G對應(yīng)).
(1)如圖1,當(dāng)點(diǎn)G落在AB邊上時(shí),求AG的長;
(2)如圖2.當(dāng)點(diǎn)G落在線段AE上時(shí),AB與CG交于點(diǎn)H,求BH;
(3)如圖3,記O為矩形ABCD的對角線交點(diǎn),S為△OGE的面積,直接寫出s的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由;
(2)性質(zhì)探究:如圖1,四邊形ABCD的對角線AC、BD交于點(diǎn)O,AC⊥BD.試證明:AB2+CD2=AD2+BC2;
(3)解決問題:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)CE、BG、GE.已知AC=4,AB=5,求GE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作發(fā)現(xiàn))
(1)如圖1,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.請按要求畫圖:將ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C的對應(yīng)點(diǎn)為C′,連接BB′,此時(shí)∠ABB′等于多少度;
(問題解決)
在某次數(shù)學(xué)興趣小組活動中,小明同學(xué)遇到了如下問題:
(2)如圖2,在等邊△ABC中,點(diǎn)P在內(nèi)部,且PA=3,PC=4,∠APC=150°,求PB的長.
經(jīng)過同學(xué)們的觀察、分析、思考、交流、對上述問題形成了如下想法:將△APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到△ABP’,連接PP′,尋找PA、PB、PC三邊之間的數(shù)量關(guān)系……請參考他們的想法,完成該問題的解答過程;
(學(xué)以致用)
(3)如圖3,在等邊△ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°.求△APC的面積;
(思維拓展)
如圖4,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k為常數(shù)),請直接寫出BD的長(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD為∠BAC的平分線,點(diǎn)E在BC的延長線上,且∠EAC=∠B,以DE為直徑的半圓交AD于點(diǎn)F,交AE于點(diǎn)M.
(1)判斷AF與DF的數(shù)量關(guān)系,并說明理由.
(2)只用無刻度的直尺畫出△ADE的邊DE上的高AH(不要求寫做法,保留作圖痕跡) .
(3)若EF=8,DF=6,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “任意畫一個(gè)三角形,其內(nèi)角和為”是隨機(jī)事件;
B. 某種彩票的中獎(jiǎng)率是,說明每買100張彩票,一定有1張中獎(jiǎng);
C. “籃球隊(duì)員在罰球線上投籃一次,投中”為隨機(jī)事件;
D. 投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)一定是50次.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com