【題目】如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠EFG的值為________

【答案】

【解析】試題解析:作EHADH,連接BE、BD,連接AEFGO,如圖,

四邊形ABCD為菱形,A=60°∴△BDC為等邊三角形,ADC=120°E點為CD的中點,CE=DE=1BECD,在RtBCE中,BE= CE=ABCD,BEAB,設AF=x,菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,EF=AF,FG垂直平分AE,EFG=AFG,在RtBEF中,(2x2+2=x2,解得x=,在RtDEH中,DH=DE=,HE=DH=,在RtAEH中,AE= =AO=,在RtAOF中,OF= =,cosAFO= =.故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】當﹣2≤x≤1時,二次函數(shù)y=﹣(x﹣m)2+m2+1有最大值4,則實數(shù)m的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點,延長CE,BA交于點F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當CF平分∠BCD時,寫出BCCD的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BE、CF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

求證:(1ABD≌△GCA;

2AD=AG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)觀察與發(fā)現(xiàn):

小明將三角形紙片)沿過點的直線折疊,使得落在邊上,折痕為,展開紙片(如圖1);在第一次的折疊基礎上第二次折疊該三角形紙片,使點和點重合,折痕為,展平紙片后得到(如圖2).小明認為是等腰三角形,你同意他的結論嗎?請說明理由:

(2)模型與運用:

如圖3,在中,,,平分于點,過點,交的延長線于點.若,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點By軸的正半軸上,點Dx軸的負半軸上,將正方形ABCD繞點A逆時針旋轉30°至正方形AB'C′D′的位置,B'C′CD相交于點M,則點M的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2);以此下去,則正方形AnBnCnDn的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙AAB于點D,交CA的延長線于點E,過點EAB的平行線EF交⊙A于點F,連接AF、BF、DF

(1)求證:BF是⊙A的切線.

(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.

查看答案和解析>>

同步練習冊答案