【題目】問(wèn)題原型:在圖①的矩形MNPQ中,點(diǎn)E、F、G、H分別在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.
操作與探究:在圖②,圖③的矩形ABCD中,AB=4,BC=8點(diǎn)E、F分別在BC、CD邊上,試?yán)谜叫尉W(wǎng)格分別作出兩圖中矩形ABCD的反射四邊形EFGH,并求出每個(gè)反射四邊形EFGH的周長(zhǎng).
發(fā)現(xiàn)與應(yīng)用:由前面的操作可以發(fā)現(xiàn)一個(gè)矩形有不同的反射四邊形,且這些反射四邊形的周長(zhǎng)都相等,若在圖①矩形MNPQ中,MN=3,NP=4則其反射四邊形EFGH的周長(zhǎng)為 .
【答案】(1)見解析;(2)8;(3)10
【解析】
(1)、根據(jù)反射四邊形的含義和E、F點(diǎn)的位置畫出即可;(2)、根據(jù)勾股定理求出邊長(zhǎng),即可求出周長(zhǎng);(3)、延長(zhǎng)GH交PN的延長(zhǎng)線于點(diǎn)A,過(guò)點(diǎn)G作GK⊥NP于K,證明Rt△FPE和Rt△FPB全等,從而求出GB的長(zhǎng)度,根據(jù)四邊形周長(zhǎng)等于2GB得出答案.
(1)作圖如下:
(2)在圖2中,EF=FG=GH=HE==2,∴四邊形EFGH的周長(zhǎng)為4×2=8,
在圖3中,EF=GH=,F(xiàn)G=HE==3,
∴四邊形EFGH的周長(zhǎng)為2×+2×3=2+6=8.
(3)如圖4,延長(zhǎng)GH交PN的延長(zhǎng)線于點(diǎn)A,過(guò)點(diǎn)G作GK⊥NP于K,
∵∠1=∠2,∠1=∠5,∴∠2=∠5.
在△FPE和△FPB中,,∴Rt△FPE≌Rt△FPB(ASA),∴EF=BF,EP=PB,
同理:AH=EH,NA=EN.∴AB=2NP=8.∵∠B=90°﹣∠5=90°﹣∠1,∠A=90°﹣∠3,
∴∠A=∠B.∴GA=GB.則KB=AB=4,∴GB==5,
∴四邊形EFGH的周長(zhǎng)為:2GB=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若 x 滿足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
設(shè) 9x=a,x4=b, 則 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
請(qǐng)仿照上面的方法求解下面問(wèn)題:
(1)若 x 滿足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的邊長(zhǎng)為 x , E , F 分別是 AD 、 DC 上的點(diǎn),且 AE=1 , CF=3 ,長(zhǎng)方形 EMFD 的面積是 48 ,分別以 MF 、 DF 作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個(gè)矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為且∠AFG=60°,GE=2BG,則折痕EF的長(zhǎng)為( )
A. 1 B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知是直角三角形,,,直線l經(jīng)過(guò)點(diǎn),分別從點(diǎn)、向直線l作垂線,垂足分別為、.當(dāng)點(diǎn),位于直線l的同側(cè)時(shí)(如圖,易證.如圖2,若點(diǎn)在直線l的異側(cè),其它條件不變,是否依然成立?若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(2)變式一:如圖3,中,,直線l經(jīng)過(guò)點(diǎn),點(diǎn)、分別在直線l上,點(diǎn)、位于l的同一側(cè),如果,求證:.
(3)變式二:如圖4,中,依然有,若點(diǎn),位于l的兩側(cè),如果,,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:甲、乙兩車分別從相距300km的A,B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)關(guān)系式,并標(biāo)明自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時(shí),求出發(fā)后多長(zhǎng)時(shí)間,兩車離各自出發(fā)地的距離相等;
(3)它們?cè)谛旭傔^(guò)程中有幾次相遇.并求出每次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為一條公路,現(xiàn)有一處需要爆破,爆破點(diǎn)周圍范圍內(nèi)有危險(xiǎn),已知點(diǎn)與公路上的?空的距離為,與?空的距離為,且.
(1)通過(guò)計(jì)算說(shuō)明公路段是否存在危險(xiǎn);
(2)直接寫出公路存在危險(xiǎn)的路段長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么下列說(shuō)法錯(cuò)誤的是( )
A. △EBD是等腰三角形,EB=ED B. 折疊后∠ABE和∠C′BD一定相等
C. 折疊后得到的圖形是軸對(duì)稱圖形 D. △EBA和△EDC′一定是全等三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個(gè)三角形放置在一起,使點(diǎn)B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請(qǐng)直接寫出EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c是△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個(gè)相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個(gè)根,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com