【題目】如圖,已知二次函數(shù)y=x2+bx+3的圖象與x軸正半軸交于B、C兩點,BC=2,則b的值為( )

A.4 B.﹣4 C.±4 D.﹣5

【答案】B

【解析】

試題分析:設C(m,0),B(n,0),則n﹣m=2,根據拋物線與x軸的交點問題得到m、n為方程x2+bx+3=0的兩根,則利用根與系數(shù)的關系得到m+n=﹣b,mn=3,由于(n﹣m)2=4,則(m+n)2﹣4mn=4,即b2﹣4×3=4,然后解關于b的方程即可.

解:設C(m,0),B(n,0),則m﹣n=2,

m、n為方程x2+bx+3=0的兩根,

m+n=﹣b>0,mn=3,

(n﹣m)2=4,

(m+n)2﹣4mn=4,

b2﹣4×3=4,解得b=4(舍去)或b=﹣4,

即b的值為﹣4.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M,N分別是∠AOB的邊OA,OB上的點,OM3,ON7,在∠AOB內有一點G,到邊OA,OB的距離相等,且滿足GMGN

1)尺規(guī)作圖:畫出點G(要求:保留作圖痕跡);

2)試證明:∠OMG+ONG180°

3)若P,Q分別是射線OA,OB上的動點,且滿足GPGQ,則當OP4時,OQ的長度為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 A,B,C 的坐標分別是(2,1),(6,1),(3,5),若△A1B1C1 與△ABC 關于x 軸對稱

1)在平面直角坐標系中畫出△A1B1C1,并寫出 A1,B1,C1 三個點的坐標

2)求出△A1B1C1的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,∠B50°,∠C70°,ADABC的角平分線,DEABE點.

1)求∠EDA的度數(shù);

2AB10,AC8,DE3,求SABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側,yx的增大而增大,在對稱軸的右側,yx的增大而減小,則所求二次函數(shù)的表達式為

A. y=-x2+2x+4 B. y=-ax2-2ax-3(a>0)

C. y=-2x2-4x-5 D. y=ax2-2ax+a-3(a<0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐徐州號高鐵A復興號高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售某一種新型通訊產品,已知每件產品的進價為4萬元,每月銷售該種產品的總開支(不含進價)總計11萬元.在銷售過程中發(fā)現(xiàn),月銷售量夕(件)與銷售單價x (萬元)之間存在著如圖所示的一次函數(shù)關系、

(1)求y關于x的函數(shù)關系式(直接寫出結果)

(2)試寫出該公司銷售該種產品的月獲利z(萬元)關于銷售單價x(萬元)的函數(shù)關系式、當銷售單價x為何值時,月獲利最大?并求這個最大值(月獲利一月銷售額一月銷售產品總進價一月總開支)

(3)若公司希望該產品一個月的銷售獲利不低于5萬元,借助(2)中函數(shù)的圖象,請你幫助該公司確定銷售單價的范圍.在此情況下,要使產品銷售量最大,你認為銷售單價應定為多少萬元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個全等的含30°60°角的三角板ADE和三角板ABC如圖所示放置,E,AC三點在一條直線上,連接BD,取BD的中點M,連接ME,MC.試判斷EMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長線與AD的延長線交于點E.

(1)若∠A=60°,求BC的長;

(2)若sinA=,求AD的長.

(注意:本題中的計算過程和結果均保留根號)

查看答案和解析>>

同步練習冊答案