精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數yax2bxc的圖象C經過(-5,0),,(1,6)三點,直線l的解析式為y=2x-3.

(1)求拋物線C的解析式;

(2)判斷拋物線C與直線l有無交點;

(3)若與直線l平行的直線y=2xm與拋物線C只有一個公共點P,求點P的坐標.

【答案】(1) yx2+3x;(2)拋物線與直線無交點;(3)P的坐標為(-1,0).

【解析】

(1)用待定系數法求求解拋物線的解析式即可;

(2)聯(lián)立拋物線C與直線l的解析式得到關于x的一元二次方程,再根據一元二次方程根的判別式判斷即可;

(3)聯(lián)立拋物線C與直線的解析式得到關于x的一元二次方程,再根據一元二次方程根的判別式求得m的值,從而得到P點坐標.

(1)(-5,0),,(1,6)分別代入拋物線,

解得ab=3,c,

yx2+3x;

(2)x2+3x=2x-3,

整理后,得x2x=0,

∵Δ<0,

拋物線與直線無交點;

(3)x2+3x=2xm,

整理后,得x2xm=0,

Δ=12-4××(-m)=0,

解得m=2,

求得點P的坐標為(-1,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知對稱軸為y軸的拋物線y=ax2+bx+3,與x軸兩個交點的橫坐標分別為x1,x2.若點(x1,x2)在反比例函數y=的圖象上,該拋物線與x軸圍成封閉區(qū)域(邊界除外)內整點(點的橫、縱坐標都是整數)的個數為k,則反比例函數y=(x>0)的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于的方程有增根,則的值為__________

【答案】2

【解析】方程兩邊都乘(x2),得

x+x2=a,即a=2x2.

分式方程的增根是x=2,

∵原方程增根為x=2,

∴把x=2代入整式方程,得a=2,

故答案為:2.

點睛:本題考查了分式方程的增根,增根是分式方程化為整式方程后產生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出a的值.

型】填空
束】
17

【題目】反比例函數y=的圖象經過點(1,6)和(m-3),則m=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)問題發(fā)現

如圖1,ABC和DCE都是等邊三角形,點B、D、E在同一直線上,連接AE.

填空:

①∠AEC的度數為   

線段AE、BD之間的數量關系為   

(2)拓展探究

如圖2,ABC和DCE都是等腰直角三角形,∠ACB=∠DCE=90°,點B、D、E在同一直線上,CM為DCE中DE邊上的高,連接AE.試求AEB的度數及判斷線段CM、AE、BM之間的數量關系,并說明理由.

(3)解決問題

如圖3,在正方形ABCD中,CD=2,點P在以AC為直徑的半圓上,AP=1,①∠DPC=  °; ②請直接寫出點D到PC的距離為 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F.

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數關系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了備戰(zhàn)初三物理、化學實驗操作考試,某校對初三學生進行了模擬訓練.物理、化學各有3個不同的操作實驗題目,物理用番號、、代表,化學用字母ab、c表示.測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定.

1)小張同學對物理的和化學的b、c實驗準備得較好.請用樹形圖或列表法求他兩科都抽到準備得較好的實驗題目的概率;

2)小明同學對物理的、、和化學的a實驗準備得較好.他兩科都抽到準備得較好的實驗題目的概率為

查看答案和解析>>

同步練習冊答案