在等腰梯形ABCD中,。直角三角板含角的頂點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過(guò)點(diǎn)A,斜邊與CD交于點(diǎn)F,若是以AB為腰的等腰三角形,則CF的等于_____
2,-3
根據(jù)已知條件可得,AB=(BC-AD)÷2÷cosB=3.①當(dāng)AB=AE時(shí),如圖,∠B=45°,∠AEB=45°,AE=AB=3,則在Rt△ABE中,BE=,故EC=4 -3=.易得△FEC為等腰直角三角形,故FC==2.
②當(dāng)AB=BE時(shí),△ABE∽△ECF,∵=,∴,
∴CF=4-3;△ABE∽△FCE,∴=,∴, CF=4-3,
③當(dāng)AE=BE時(shí),△ABE′″和△CFE′″是等腰Rt△,∵BC=4AD,AD=,∴BC=4,∵∠B=45°,∴BE′″=,∴CE′″=,∴CF=CE′″=
故答案為:或2或4-3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在長(zhǎng)方形ABCD的對(duì)稱(chēng)軸l上找點(diǎn)P,使得△PAB、△PBC均為等腰三角形,則滿(mǎn)足條件的點(diǎn)P有

A.1個(gè)          B.3個(gè)          C.5個(gè)          D.無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)角線(xiàn)長(zhǎng)為為2cm的正方形周長(zhǎng)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)是2,M是AD的中點(diǎn).點(diǎn)E從點(diǎn)A出發(fā),沿AB運(yùn)動(dòng)到點(diǎn)B停止.連接EM并延長(zhǎng)交射線(xiàn)CD于點(diǎn)F,過(guò)M作EF的垂線(xiàn)交射線(xiàn)BC于點(diǎn)G,連接EG、FG.

(1)設(shè)AE=x時(shí),△EGF面積為y.求y關(guān)于x的函數(shù)關(guān)系式,并填寫(xiě)自變量x的取值范圍;
(2)P是MG的中點(diǎn),請(qǐng)直接寫(xiě)出點(diǎn)P運(yùn)動(dòng)路線(xiàn)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果一條直線(xiàn)把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線(xiàn)稱(chēng)為這個(gè)平面圖形的一條面積等分線(xiàn).如:平行四邊形的一條對(duì)線(xiàn)所在的直線(xiàn)就是平行四邊形的一條面積等分線(xiàn).
(1)三角形的中線(xiàn)、高線(xiàn)、角平分線(xiàn)分別所在的直線(xiàn)一定是三角形的面積等分線(xiàn)的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過(guò)點(diǎn)A作出梯形ABCD的面積等分線(xiàn)(不寫(xiě)作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過(guò)點(diǎn)A能否作出四邊形ABCD的面積等分線(xiàn)?若能,請(qǐng)畫(huà)出面積等分線(xiàn),并給出證明;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,點(diǎn)E在邊BC上,BE:EC=1:2,連接AE交BD于點(diǎn)F,則△BEF的面積與△ADF的面積之比為 ▲ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖2,在正方形ABCD中,AB=4,點(diǎn)O在AB上,且OB=1,點(diǎn)P是BC上一動(dòng)點(diǎn),連接OP,將線(xiàn)段OP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段OQ.要使點(diǎn)Q恰好落在AD上,則BP的長(zhǎng)是(    )
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,平行四邊形ABCD中,AB=6,BC=4,∠A=60°,要用一塊矩形鋁板切割出這樣的平行四邊形,使廢料最少,則所需鋁板的面積最小應(yīng)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,則下底BC的長(zhǎng)是(▲)
A.3B.4 C.2D.2+2

查看答案和解析>>

同步練習(xí)冊(cè)答案