【題目】在平面直角坐標(biāo)系xOy中,頂點(diǎn)為A的拋物線與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)D,已知A(1,4)B(3,0)

(1)求拋物線對(duì)應(yīng)的二次函數(shù)表達(dá)式;

(2)探究:如圖1,連接OA,作DE∥OABA的延長(zhǎng)線于點(diǎn)E,連接OEAD于點(diǎn)FMBE的中點(diǎn),則OM是否將四邊形OBAD分成面積相等的兩部分?請(qǐng)說(shuō)明理由;

(3)應(yīng)用:如圖2,P(m,n)是拋物線在第四象限的圖象上的點(diǎn),且m+n=﹣1,連接PA、PC,在線段PC上確定一點(diǎn)M,使AN平分四邊形ADCP的面積,求點(diǎn)N的坐標(biāo).提示:若點(diǎn)AB的坐標(biāo)分別為(x1,y1)(x2,y2),則線段AB的中點(diǎn)坐標(biāo)為(,)

【答案】(1)y=﹣x2+2x3;(2)OM將四邊形OBAD分成面積相等的兩部分,理由見(jiàn)解析;(3)點(diǎn)N(,﹣)

【解析】

(1)函數(shù)表達(dá)式為:ya(x1)2+4,將點(diǎn)B坐標(biāo)的坐標(biāo)代入上式,即可求解;

(2)利用同底等高的兩個(gè)三角形的面積相等,即可求解;

(3)(2)知:點(diǎn)NPQ的中點(diǎn),根據(jù)C,P點(diǎn)的坐標(biāo)求出直線PC的解析式,同理求出AC,DQ的解析式,并聯(lián)立方程求出Q點(diǎn)的坐標(biāo),從而即可求N點(diǎn)的坐標(biāo).

(1)函數(shù)表達(dá)式為:ya(x1)2+4,

將點(diǎn)B坐標(biāo)的坐標(biāo)代入上式得:0a(31)2+4

解得:a=﹣1,

故拋物線的表達(dá)式為:y=﹣x2+2x3;

(2)OM將四邊形OBAD分成面積相等的兩部分,理由:

如圖1,∵DEAO,SODASOEA,

SODA+SAOMSOEA+SAOM,即:S四邊形OMADSOBM

SOMESOBM,

S四邊形OMADSOBM;

(3)設(shè)點(diǎn)P(mn),n=﹣m2+2m+3,而m+n=﹣1

解得:m=﹣14,故點(diǎn)P(4,﹣5);

如圖2,故點(diǎn)DQDACPC的延長(zhǎng)線于點(diǎn)Q,

(2)知:點(diǎn)NPQ的中點(diǎn),

設(shè)直線PC的解析式為y=kx+b,

將點(diǎn)C(1,0)、P(4,﹣5)的坐標(biāo)代入得:,

解得:,

所以直線PC的表達(dá)式為:y=﹣x1…①,

同理可得直線AC的表達(dá)式為:y2x+2,

直線DQCA,且直線DQ經(jīng)過(guò)點(diǎn)D(0,3),

同理可得直線DQ的表達(dá)式為:y2x+3…②,

聯(lián)立①②并解得:x=﹣,即點(diǎn)Q(,)

∵點(diǎn)NPQ的中點(diǎn),

由中點(diǎn)公式得:點(diǎn)N(,﹣)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組做用頻率估計(jì)概率的實(shí)驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是( 。

A. 拋一枚硬幣,出現(xiàn)正面朝上

B. 擲一個(gè)正六面體的骰子,出現(xiàn)3點(diǎn)朝上

C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃

D. 從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于點(diǎn)B,AC邊上一點(diǎn)O,⊙O經(jīng)過(guò)點(diǎn)B、C,與AC交于點(diǎn)D,與CE交于點(diǎn)F,連結(jié)BF。

(1)求證:AE是⊙O的切線;

(2)若,AE=8,求⊙O的半徑;

(3)在(2)條件下,求BF的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于點(diǎn)E,連接CE,過(guò)點(diǎn)CCFBAPQ于點(diǎn)F,連接AF

1)求證:△AED≌△CFD;

2)求證:四邊形AECF是菱形.

3)若ED6,AE10,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PAPB為圓O的切線,切點(diǎn)分別為A、B,POAB于點(diǎn)C,PO的延長(zhǎng)線交圓O于點(diǎn)D,下列結(jié)論不一定成立的是( )

A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+2x+8x軸交于B、C兩點(diǎn),點(diǎn)D平分BC,且點(diǎn)A為拋物線上的點(diǎn),且∠BAC為銳角,則AD的值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是ABC的邊AB上一點(diǎn),O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣10),B30)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線對(duì)稱軸DEx軸于點(diǎn)E,連接BD

1)求經(jīng)過(guò)AB,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PEPC時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機(jī)對(duì)部分游客進(jìn)行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表.

滿意度

人數(shù)

所占百分比

非常滿意

12

10%

滿意

54

m

比較滿意

n

40%

不滿意

6

5%

根據(jù)圖表信息,解答下列問(wèn)題:

(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)據(jù)統(tǒng)計(jì),該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對(duì)景區(qū)服務(wù)工作的肯定,請(qǐng)你估計(jì)該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.

查看答案和解析>>

同步練習(xí)冊(cè)答案