【題目】求證:相似三角形對(duì)應(yīng)角的角平分線之比等于相似比.要求:
①分別在給出的△ABC與△DEF中用尺規(guī)作出一組對(duì)應(yīng)角的平分線,不寫作法,保留作圖痕跡;
②在完成作圖的基礎(chǔ)上,寫出已知、求證,并加以證明.
【答案】見解析
【解析】
(1)按照作一個(gè)角的平分線的作法作出一組對(duì)應(yīng)角的平分線即可;
(2)首先根據(jù)相似三角形的對(duì)應(yīng)角相等,由△ABC∽△DEF,得出∠A=∠D ,∠ABC =∠DEF ,再根據(jù)角平分線的定義,得出∠ABM=∠DEN,根據(jù)兩角分別相等,兩三角形相似,證明△ABM∽△DEN,繼而得出對(duì)應(yīng)邊的比等于相似比.
(1)
(2)如(1)圖,已知△ABC∽△DEF,△ABC和△DEF的相似比為k,BM、EN分別是△ABC和△DEF的角平分線。求證: =k.
證明:∵△ABC∽△DEF,,
∴∠A=∠D ,∠ABC =∠DEF ,,
∵BM、EN分別是△ABC和△DEF的角平分線,
∴∠ABM=∠ABC,∠DEN=∠DEF,
∴∠ABM=∠DEN,
∵∠A=∠D ,∠ABM=∠DEN,
∴△ABM∽△DEN,
∴ =k.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為青島市和李滄區(qū)的重點(diǎn)民生工程,經(jīng)過8年不懈努力,李村河從一條城市臭水溝變成了一個(gè)美不勝收的濕地公園,因其卓越的治理效果,李村河上游綜合治理工程榮獲了住建部“中國(guó)人居環(huán)境范例獎(jiǎng)”.下圖是我區(qū)李村河上一座拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中.
(1)求拋物線的解析式;
(2)求兩盞景觀燈之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(-1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,請(qǐng)直接寫出此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1坐標(biāo);(不必畫出平移后的三角形)
(2)將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△A′BC′,畫出△A′BC′并寫出A′點(diǎn)的坐標(biāo);
(3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使放大前后的面積之比為1∶4,請(qǐng)你在網(wǎng)格內(nèi)畫出△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點(diǎn)B的直線與對(duì)角線AC、邊AD分別交于點(diǎn)E和F.過點(diǎn)E作EG∥BC,交AB于G,則圖中相似三角形有( )
A. 4對(duì)B. 5對(duì)C. 6對(duì)D. 7對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,投影線方向如圖所示,點(diǎn)C在斜邊AB上的正投影為點(diǎn)D,
(1)試寫出邊AC、BC在AB上的投影;
(2)試探究線段AC、AB和AD之間的關(guān)系;
(3)線段BC、AB和BD之間也有類似的關(guān)系嗎?請(qǐng)直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=mx2+(m﹣2)x﹣2m+2(m≠0).
(1)求證:拋物線與x軸有交點(diǎn);
(2)若拋物線與x軸交于點(diǎn)A(x1,0),B(x2,0),點(diǎn)A在點(diǎn)B的右側(cè),且x1+2x2=1.
①求m的值;
②點(diǎn)P在拋物線上,點(diǎn)G(n,﹣n﹣),求PG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形廣告牌架在樓房頂部,已知CD=2m,經(jīng)測(cè)量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的長(zhǎng).(參考數(shù)據(jù):tan37°≈0.75, ≈1.732,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com