【題目】如圖所示,△ABC中,∠B=36°,∠ACB=110°,AE是∠BAC的平分線.
(1)求∠AEC的度數(shù);
(2)過△ABC的頂點A作BC邊上的高AD,求∠DAE的度數(shù).
【答案】(1)53°;(2)20°
【解析】
(1)根據(jù)三角形的內(nèi)角和定理,可得∠BAC,根據(jù)角平分線的定義,可得∠BAE的度數(shù),根據(jù)外角的性質(zhì),可得∠DEA,根據(jù)直角三角形的性質(zhì),可得答案;
(2)由垂直的定義得到∠D=90°,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.
解:(1)∵∠BAC=180°-∠B-∠ACB=180°-36°-110°=34°.
∵AE是∠BAC的平分線,
∴∠BAE =∠CAE =∠BAC=17°.
∴∠AEC=∠B+∠BAE=36°+17°=53°;
(2)∵AD⊥BD,
∴∠D=90°,
∴∠DAE=90°-53°=37°.
∴∠DAC=∠DAE-∠CAE=20°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個四位自然數(shù)的百位數(shù)字大于或等于十位數(shù)字,且千位數(shù)字等于百位數(shù)字與十位數(shù)字的和,個位數(shù)字等于百位與十位數(shù)字的差,則我們稱這個四位數(shù)為親密數(shù),例如:自然數(shù)4312,其中3>1,4=3+1,2=3-1,所以4312是親密數(shù);
(1)最小的親密數(shù)是 ,最大的親密數(shù)是 ;
(2)若把一個親密數(shù)的千位數(shù)字與個位數(shù)字交換,得到的新數(shù)叫做這個親密數(shù)的友誼數(shù),請證明任意一個親密數(shù)和它的友誼數(shù)的差都能被原親密數(shù)的十位數(shù)字整除;
(3)若一個親密數(shù)的后三位數(shù)字所表示的數(shù)與千位數(shù)字所表示的數(shù)的7倍之差能被13整除,請求出這個親密數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,CE 平分∠ACD,AE 平分∠BAC,∠EAC+∠ACE=90°.
(1)請判斷 AB 與 CD 的位置關(guān)系,并說明理由;
(2)如圖,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變時,移動直角頂點 E,使∠MCE=∠ECD, 當(dāng)直角頂點 E 點移動時,請確定∠BAE 與∠MCD 的數(shù)量關(guān)系,并說明理由;
(3)如圖,在(1)的結(jié)論下,P 為線段 AC 上的一個定點,點 Q 為直線 CD 上的一個動點,當(dāng)點 Q 在射線 CD 上運動時(點 C 除外)∠BAC 與∠CPQ+∠CQP 有何數(shù)量關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠,
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠=90°,則BE_____CF;EF____.(填“>”“<”或“=”)
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件__________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動,他們購進(jìn)一批單價為20元的“孝文化衫”在課余時間進(jìn)行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗發(fā)現(xiàn),若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機小李某天上午營運時是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接六位乘客的行車?yán)锍蹋▎挝唬?/span>)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時,小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com