【題目】某工廠生產(chǎn)一種新型產(chǎn)品,每件成本為元.產(chǎn)品按質(zhì)量分為個等級(每個月能生產(chǎn)同等級的產(chǎn)品),第一等級(最低等級)的產(chǎn)品能生產(chǎn)萬件,每件以元銷售.每提搞一個等級,每件銷售單價就提高元,但產(chǎn)量減少萬件.設生產(chǎn)該商品的質(zhì)為第等級(為整數(shù),),產(chǎn)品的月總利潤為元.

1)求之間的函數(shù)關系式;

2)生產(chǎn)該產(chǎn)品的質(zhì)量為第幾等級時,月總利潤最大,最大利潤是多少?

3)該商品在生產(chǎn)過程中,共有幾個等級的產(chǎn)品銷售的利潤不低于萬元.

【答案】1;(2)生產(chǎn)該產(chǎn)品的質(zhì)量為第等級時,月總利潤最大,最大利潤是元;(38

【解析】

1)先表示出第x等級時,每件的銷售單價和月產(chǎn)量,再根據(jù)總利潤=單件利潤×銷售量可得函數(shù)解析式;
2)將(1)中所求函數(shù)解析式配方成頂點式,結合x的取值可得W的最大值;
3)由,再利用二次函數(shù)的圖象求解可得.

:1)因為質(zhì)量為第等級時,每件的銷售單價為/件,產(chǎn)量為萬件,

則依題意得:

2

為整數(shù),

時,取得最大值,最大值為萬元.

:生產(chǎn)該產(chǎn)品的質(zhì)量為第等級時,月總利潤最大,最大利潤是元.

3)由(2)知

,

解得

由函數(shù)圖象可知,

,

,

為整數(shù),

,

月利潤不低于,

共有個等級的產(chǎn)品銷售的月利潤不低于萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數(shù)的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若拋物線上有兩點關于原點對稱(點A在點B左側)則稱它為“完美拋物線”,如圖.

1)若,求的值;

2)若拋物線是“完美拋物線”,求的值;

3)若完美拋物線軸交于點E軸交于兩點(點D在點C的左側),頂點為點,是以為直角邊的直角三角形,點,求點的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸交于點,如圖,作正方形,點在直線上,點軸上,將圖中陰影部分三角形的面積從左到右依次記為,則

1的值為___________

2的值為___________(的代數(shù)式表示,為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點,COB的中點,DAB上一點,四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)圖象第一象限上一點,過點A軸于B點,以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點C,在AB的左側半圓上有一動點D,連結CDAB于點的面積為的面積為,連接BC,______三角形,若的值最大為1,則k的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】機器人海寶在某圓形區(qū)域表演按指令行走,如圖所示,海寶從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O.(本題參考數(shù)據(jù):sin67.4°=,cos67.4°=tan67.4°=)

(1)求弦BC的長;

(2)請判斷點A和圓的位置關系,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點分別是邊的中點,延長到點,使,得四邊形.若使四邊形是正方形,則應在中再添加一個條件為__________.

查看答案和解析>>

同步練習冊答案