【題目】如圖,PB為⊙O的切線,B為切點(diǎn),直線PO交⊙于點(diǎn)E、F,過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長(zhǎng).
【答案】(1)證明見解析(2)EF2=4ODOP,證明見解析(3),
【解析】解:(1)連接OB,
∵PB是⊙O的切線,∴∠PBO=90°。
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB。
又∵PO=PO,∴△PAO≌△PBO(SAS)。
∴∠PAO=∠PBO=90°。∴直線PA為⊙O的切線。
(2)EF2=4ODOP。證明如下:
∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°。
∴∠OAD=∠OPA。∴△OAD∽△OPA,∴,即OA2=ODOP。
又∵EF=2OA,∴EF2=4ODOP。
(3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3(三角形中位線定理)。
設(shè)AD=x,
∵tan∠F=,∴FD=2x,OA=OF=2x﹣3。
在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32,
解得,x1=4,x2=0(不合題意,舍去)。∴AD=4,OA=2x﹣3=5。
∵AC是⊙O直徑,∴∠ABC=90°。
又∵AC=2OA=10,BC=6,∴cos∠ACB=。
∵OA2=ODOP,∴3(PE+5)=25。∴PE=。
(1)連接OB,根據(jù)垂徑定理的知識(shí),得出OA=OB,∠POA=∠POB,從而證明△PAO≌△PBO,然后利用全等三角形的性質(zhì)結(jié)合切線的判定定理即可得出結(jié)論。
(2)先證明△OAD∽△OPA,由相似三角形的性質(zhì)得出OA與OD、OP的關(guān)系,然后將EF=2OA代入關(guān)系式即可。
(3)根據(jù)題意可確定OD是△ABC的中位線,設(shè)AD=x,然后利用三角函數(shù)的知識(shí)表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,從而能求出cos∠ACB,再由(2)可得OA2=ODOP,代入數(shù)據(jù)即可得出PE的長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?
(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖,有下列 5 個(gè)結(jié)論:①4a+2b+c>0;②abc<0;③b<a+c;④3b>2c;⑤a+b<m(am+b),(m≠1 的實(shí)數(shù));其中正確結(jié)論的個(gè)數(shù)為( )
A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點(diǎn)D、E、F,那么AF、BD、CE的長(zhǎng)分別為( 。
A. AF=4,BD=9,CE=5 B. AF=4,BD=5,CE=9
C. AF=5,BD=4,CE=9 D. AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計(jì)的“作平行四邊形ABCD的邊AB的中點(diǎn)”的尺規(guī)作圖過程.
已知:平行四邊形ABCD.
求作:點(diǎn)M,使點(diǎn)M 為邊AB 的中點(diǎn).
作法:如圖,
①作射線DA;
②以點(diǎn)A 為圓心,BC長(zhǎng)為半徑畫弧,
交DA的延長(zhǎng)線于點(diǎn)E;
③連接EC 交AB于點(diǎn)M .
所以點(diǎn)M 就是所求作的點(diǎn).
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形 (保留作圖痕跡);
(2)完成下面的證明.
證明:連接AC,EB.
∵四邊形ABCD 是平行四邊形,
∴AE∥BC.
∵AE= ,
∴四邊形EBCA 是平行四邊形( )(填推理的依據(jù)) .
∴AM =MB ( )(填推理的依據(jù)) .
∴點(diǎn)M 為所求作的邊AB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.如圖,⊙O是△ABC的內(nèi)切圓,與三邊分別相切于點(diǎn)E、F、G.
(1)求證:內(nèi)切圓的半徑r=1;
(2)求tan∠OAG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
求證:△CED是等腰直角三角形
證明:∵∠1=∠2( )
∴EC= (在一個(gè)三角形中,等角對(duì)等邊)
∵∠A=∠B=90°,AE=BC
∴△AED≌△BCE( )
∴∠AED=∠ ( )
∵∠BCE+∠BEC=90°
∠ +∠BEC=90°(等量代換)
∴∠DEC=90°.
∴△CED是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,點(diǎn)A(1,3),點(diǎn)B(0,2).連接AO
(1)求直線AB的解析式;
(2)求三角形AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=12,BC=25,P是線段AB上一點(diǎn)(點(diǎn)P不與A,B重合),將△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,CG,PG分別交線段AD于E,O.
(1)如圖1,若OP=OE,求證:AE=PB;
(2)如圖2,連接BE交PC于點(diǎn)F,若BE⊥CG.
①求證:四邊形BFGP是菱形;
②當(dāng)AE=9,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com