【題目】某大學生創(chuàng)業(yè)團隊抓住商機,購進一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費用80元.

(1)請直接寫出yx之間的函數(shù)關(guān)系式;

(2)如果每天獲得160元的利潤,銷售單價為多少元?

(3)設(shè)每天的利潤為w元,當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

【答案】(1)yx之間的函數(shù)關(guān)系式為y=﹣80x+560;(2)如果每天獲得160元的利潤,銷售單價為4元;(3)當銷售單價定為5元時,每天的利潤最大,最大利潤是240元.

【解析】1)設(shè)yx的函數(shù)關(guān)系式為y=kx+b,將x=3.5,y=280;x=5.5,y=120分別代入求出k、b的值即可得;

(2)根據(jù)利潤=(售價-成本)×銷售量-其他費用列出方程進行求解即可得;

(3)根據(jù)利潤=(售價-成本)×銷售量-其他費用列出函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)進行解答即可得.

(1)設(shè)y=kx+b,將x=3.5,y=280;x=5.5,y=120代入,

,解得,

yx之間的函數(shù)關(guān)系式為y=﹣80x+560;

(2)由題意,得(x﹣3)(﹣80x+560)﹣80=160,

整理,得x2﹣10x+24=0,解得x1=4,x2=6,

3.5≤x≤5.5,x=4,

答:如果每天獲得160元的利潤,銷售單價為4元;

(3)由題意得:w=(x﹣3)(﹣80x+560)﹣80

=﹣80x2+800x﹣1760

=﹣80(x﹣5)2+240,

3.5≤x≤5.5,∴當x=5時,w有最大值為240,

故當銷售單價定為5元時,每天的利潤最大,最大利潤是240元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點P是∠AOB的平分線OC上的一點,我們可以分別OA、OB在截取點M、N,使OM=ON,連結(jié)PM、PN,就可得到.

1)請你在圖①中,根據(jù)題意,畫出上面敘述的全等三角形,并加以證明.

2)請你參考(1)中的作全等三角形的方法,解答下列問題:

(Ⅰ)如圖②,在△ABC中,∠ACB是直角,B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.請你判斷并寫出FEFD之間的數(shù)量關(guān)系.

(Ⅱ)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,請問,你在(Ⅰ)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、,添加下列條件后,不能判斷四邊形為菱形的是(

A. 平分

B.

C. 為中線

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別平分的外角,一動點上運動,過點的平行線與的角平分線分別交于點和點

求證:當點運動到什么位置時,四邊形為矩形,說明理由;

在第題的基礎(chǔ)上,當滿足什么條件時,四邊形為正方形,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+2ax+c與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)當a>0時,如圖所示,若點D是第三象限方拋物線上的動點,設(shè)點D的橫坐標為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請問當m為何值時,S有最大值?最大值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1.如圖,已知AB∥CD,求證:∠A+∠C=∠E

2)直接寫出當點E的位置分別如圖、圖、圖的情形時∠A、∠C、∠AEC之間的關(guān)系.

∠C、∠A、∠AEC之間的關(guān)系為

∠C、∠A、∠AEC之間的關(guān)系為

∠C、∠A∠AEC之間的關(guān)系為 ;

3)在(2)中的3中情形中任選一種進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇,李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:

地鐵站

A

B

C

D

E

x(千米)

8

9

10

11.5

13

y1(分鐘)

18

20

22

25

28

(1)y1關(guān)于x的函數(shù)解析式;

(2)李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用y2=x2-11x+78來描述,請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) (2)

(3)(x-1)(x+3)=12 (4)

查看答案和解析>>

同步練習冊答案