兩個(gè)同心圓中,小圓的一條切線被大圓所截部分的長(zhǎng)是12,則兩圓所圍成的圓環(huán)面積是

[  ]

A.9  B.18  C.2  D.36

答案:D
解析:

如圖:圓環(huán)面積S環(huán)=π(OB2-OC2)=πBC2,所以S環(huán)=π62=36π


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,以O(shè)為圓心的兩個(gè)同心圓中,小圓的弦AB的延長(zhǎng)線交大圓于點(diǎn)C,若AB=4,BC=1,則下列整數(shù)于圓環(huán)面積最接近的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑長(zhǎng)為2,大圓的弦AB與小圓交于點(diǎn)精英家教網(wǎng)C、D,且AB=3CD,∠COD=60°.
(1)求大圓半徑的長(zhǎng);
(2)若大圓的弦AE與小圓切于點(diǎn)F,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑長(zhǎng)為4,大圓的弦AB與小圓交于點(diǎn)C、D,且AC=CD,∠COD=60°
(1)求大圓半徑的長(zhǎng);
(2)若大圓的弦AE長(zhǎng)為8
2
,請(qǐng)判斷弦AE與小圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•靜安區(qū)二模)如圖,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于B,大圓的弦BC⊥AB,過點(diǎn)C作大圓的切線交AB的延長(zhǎng)線于D,OC交小圓于E
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長(zhǎng)y,yx之間的函數(shù)解析式,并寫出定義域.
(3)△BCE能否成為等腰三角形?如果可能,求出大圓半徑;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高要市二模)如圖,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于B,大圓的弦BC⊥AB,過點(diǎn)C作大圓的切線交AB的延長(zhǎng)線于D,OC交小圓于E.
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長(zhǎng)為y,求y與x之間的函數(shù)解析式,并寫出定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案