【題目】密碼鎖有三個(gè)轉(zhuǎn)輪,每個(gè)轉(zhuǎn)輪上有十個(gè)數(shù)字:0,1,2,…9.小黃同學(xué)是9月份中旬出生,用生日月份+日期設(shè)置密碼:9××(注:中旬為某月中的11日﹣20日),小張同學(xué)要破解其密碼:

1)第一個(gè)轉(zhuǎn)輪設(shè)置的數(shù)字是9,第二個(gè)轉(zhuǎn)輪設(shè)置的數(shù)字可能是   

2)請你幫小張同學(xué)列舉出所有可能的密碼,并求密碼數(shù)能被3整除的概率.

【答案】112;(2

【解析】

1)根據(jù)每個(gè)月分為上旬、中旬、下旬,分別是:上旬:1日﹣10日,中旬:11日﹣20日,下旬:21日到月底,由此即可解決問題;

2)利用列舉法即可解決問題.

解:(1小黃同學(xué)是9月份中旬出生,

第一個(gè)轉(zhuǎn)輪設(shè)置的數(shù)字是9,第二個(gè)轉(zhuǎn)輪設(shè)置的數(shù)字可能是1,2

故答案為12;

2)所有可能的密碼是:911912,913,914,915,916,917918,919,920;

能被3整除的有912,915,918,;

密碼數(shù)能被3整除的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量y(萬件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤=售價(jià)﹣制造成本)

1)寫出每月的利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬元的利潤?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤?最大利潤是多少?

3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE均為等腰直角三角形,連接BE,點(diǎn)F、G分別為AD、AC的中點(diǎn),連接FG.在ADEA旋轉(zhuǎn)的過程中,當(dāng)B、D、E三點(diǎn)共線時(shí),AB=,AD=1,則線段FG的長為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB為半圓O的直徑,D為BA的延長線上一點(diǎn),DC為半圓O的切線,切點(diǎn)為C.

(1)求證:∠ACD=∠B;

(2)如圖2,∠BDC的平分線分別交AC,BC于點(diǎn)E,F(xiàn);

①求tan∠CFE的值;

②若AC=3,BC=4,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線的圖象經(jīng)過點(diǎn),設(shè)它與軸的另一個(gè)交點(diǎn)為(點(diǎn)在點(diǎn)的左側(cè)),且的面積是3

1)求該拋物線的表達(dá)式;

2)求的正切值;

3)若拋物線與軸交于點(diǎn),直線軸于點(diǎn),點(diǎn)在射線上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4,由弦P3O4圍成的弓形面積記為S3按此做法進(jìn)行下去,其中S2018的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線yx與反比例函數(shù)yk0,x0)的圖象交于點(diǎn)Q4,a),點(diǎn)Pm,n)是反比例函數(shù)圖象上一點(diǎn),且n2m

1)求點(diǎn) P坐標(biāo);

2)若點(diǎn)Mx軸上,使得△PMQ的面積為3,求M坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、bc為常數(shù),夢想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于AB兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對稱軸翻折,點(diǎn)C的對稱點(diǎn)為N,若為該拋物線的夢想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢想直線上,是否存在點(diǎn)F,使得以點(diǎn)A、CE、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)EF的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市體育中考現(xiàn)場考試內(nèi)容有三項(xiàng):50米跑為必測項(xiàng)目.另在立定跳遠(yuǎn)、實(shí)心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項(xiàng).

1)每位考生有_________種選擇方案;

2)求小明與小剛選擇同種方案的概率.

查看答案和解析>>

同步練習(xí)冊答案