【題目】如圖,在中,,,延長至點,使,則________.
【答案】
【解析】
過點A 作AF⊥BC于點,過點D 作DE⊥AC交AC的延長線于點E,目的得到直角三角形利用三角函數(shù)得△AFC三邊的關系,再證明 △ACF∽△DCE,利用相似三角形性質(zhì)得出△DCE各邊比值,從而得解.
解:過點A 作AF⊥BC于點,過點D 作DE⊥AC交AC的延長線于點E,
∵,
∴∠B=∠ACF,sin∠ACF==,
設AF=4k,則AC=5k,CD=,由勾股定理得:FC=3k,
∵∠ACF=∠DCE,∠AFC=∠DEC=90°,
∴△ACF∽△DCE,
∴AC:CD=CF:CE=AF:DE,即5k: =3k:CE=4k:DE,
解得:CE=,DE=2k,即AE=AC+CE=5k+=,
∴在Rt△AED中, DE:AE=2k:=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA
與⊙O的另一個交點為E,連結(jié)AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x+6與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)如圖1,點P為直線BC上方拋物線上一動點,過點P作PH∥y軸,交直線BC于點H,過點P作PQ⊥BC于點Q,當PQ﹣PH最大時,點C關于x軸的對稱點為點D,點M為直線BC上一動點,點N為y軸上一動點,連接PM、MN,求PM+MN+ND的最小值;
(2)如圖2,連接AC,將△OAC繞著點O順時針旋轉(zhuǎn),記旋轉(zhuǎn)過程中的△OAC為△OA'C',點A的對應點為點A',點C的對應點為點C'.當點A'剛好落在線段AC上時,將△OA'C'沿著直線BC平移,在平移過程中,直線OC'與拋物線對稱軸交于點E,與x軸交于點F,設點R是平面內(nèi)任意一點,是否存在點R,使得以B、E、F、R為頂點的四邊形是菱形?若存在,請直接寫出點R的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與雙曲線在第一象限內(nèi)交于、兩點,已知,.
(1)__________,____________________,____________________.
(2)直接寫出不等式的解集;
(3)設點是線段上的一個動點,過點作軸于點,是軸上一點,求的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,﹣3),點P是直線BC下方拋物線上的任意一點。
(1)求這個二次函數(shù)y=x2+bx+c的解析式。
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:三角形一邊上的點將該邊分為兩條線段,且這兩條線段的積等于這個點到該邊所對頂點連線的平方,則稱這個點為三角形該邊的“好點”.如圖1,△ABC中,點D是BC邊上一點,連結(jié)AD,若,則稱點D是△ABC中BC邊上的“好點”.
(1)如圖2,△ABC的頂點是網(wǎng)格圖的格點,請僅用直尺畫出AB邊上的一個“好點”.
(2)△ABC中,BC=9,,,點D是BC邊上的“好點”,求線段BD的長.
(3)如圖3,△ABC是的內(nèi)接三角形,OH⊥AB于點H,連結(jié)CH并延長交于點D.
①求證:點H是△BCD中CD邊上的“好點”.
②若的半徑為9,∠ABD=90°,OH=6,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝中華人民共和國建國70周年,某校從A、B兩位男生和D、E兩位女生中選派學生,參加全區(qū)中小學“我和我的祖國”演講比賽.
(1)如果選派一位學生參賽,那么選派到的代表是A同學的概率是 ;
(2)如果選派兩位學生參賽,用樹狀圖或列表法,求恰好選派一男一女兩位同學參賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關系式.
(2)要使日銷售利潤為720元,銷售單價應定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關系式,當x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com