【題目】如圖,在Rt△ACB中,∠A=30°,過點(diǎn)B、C的⊙OABD,交ACE,點(diǎn)FAE上,連接DEDC、BEDF,已知BC=EC,AD=AF

1)求證:DF是⊙O的切線;

2)當(dāng)BC=4時(shí),求弦CD的長(zhǎng).

【答案】(1)證明見解析;2CD=2

【解析】試題分析:(1)連接半徑OD,可求得∠ODB=15°,∠ADF=75°,進(jìn)一步可求得∠ODF=90°,可證得結(jié)論;(2)先求出BE,證明△ADC∽△AEB,有,可求出CD的長(zhǎng).

試題解析:1)如圖,連接半徑OD,

∵∠A=30°,AF=AD,

∴∠ADF=75°

BE為直徑,BC=EC,

∴∠CBE=45°,且∠ABC=60°,

∴∠OBD=ODB=15°,

∴∠ODF=180°﹣ODB+ADF=90°,

DF是⊙O的切線;

2)在RtBCE中,BC=CE=4,

BE=

∵∠A=30°,

AB=2BC=8AC=,

又∠ABE=DCA,A=A

∴△ADC∽△AEB,

,即,

解得CD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=bx2+a的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買飲料,每種飲料被選中的可能性相同.(為了方便,列樹狀圖或列表時(shí),雪碧、可樂、果汁、奶汁可以分別用a、b、c、d代替)

(1)若他去買一瓶飲料,則他買到奶汁的概率是  ;

(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為矩形,A點(diǎn)在x軸上,C點(diǎn)在y軸上,矩形一角經(jīng)過翻折后,頂點(diǎn)B落在OA邊的點(diǎn)G處,折痕為EF,F(xiàn)點(diǎn)的坐標(biāo)是(4,1),∠FGA=30°.

(1)求B點(diǎn)坐標(biāo).
(2)求直線EF解析式.
(3)若點(diǎn)M在y軸上,直線EF上是否存在點(diǎn)N,使以M、N、F、G為頂點(diǎn)的四邊形是平行四邊形?若存在,求N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)填空:點(diǎn)A坐標(biāo)為 ;拋物線的解析式為

(2)在圖1中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?

(3)在圖2中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A4,0),B04),C6,6).

1)求拋物線的表達(dá)式;

2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;

3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點(diǎn)D,EF,G分別在線段AO,OBBC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若|a﹣3|+(2b﹣4)2=0,則3(a﹣b)﹣2(2a﹣3b)的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】13×13的網(wǎng)格圖中,已知ABC和點(diǎn)M(1,2).

(1)以點(diǎn)M為位似中心,畫出ABC的位似圖形A′B′C′,其中A′B′C′ABC的位似比為2;

(2)寫出A′B′C′的各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿對(duì)角線BD折疊,設(shè)重疊部分為△EBD,則下列說(shuō)法錯(cuò)誤的是(
A.AB=CD
B.∠BAE=∠DCE
C.EB=ED
D.∠ABE一定等于30°

查看答案和解析>>

同步練習(xí)冊(cè)答案