【題目】如圖,點E是矩形ABCD的邊CD上一點,把△ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕,且,那么該矩形的周長為______cm.
【答案】72
【解析】
根據(jù)矩形的性質(zhì)可得AB=CD,AD=BC,∠B=∠D=90°,再根據(jù)翻折變換的性質(zhì)可得∠AFE=∠D=90°,AD=AF,然后根據(jù)同角的余角相等求出∠BAF=∠EFC,然后根據(jù),設CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性質(zhì)求出BF,再在Rt△ADE中,利用勾股定理構(gòu)建方程即可解決問題.
解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
∵△ADE沿AE對折,點D的對稱點F恰好落在BC上,
∴∠AFE=∠D=90°,AD=AF,
∵∠EFC+∠AFB=180°-90°=90°,
∠BAF+∠AFB=90°,
∴∠BAF=∠EFC,
∵,
∴設CE=3k,CF=4k,
∴,
∵∠BAF=∠EFC,且∠B=∠C=90°
∴△ABF∽△FCE,
∴,即,
∴BF=6k,
∴BC=BF+CF=10k=AD,
∵AE2=AD2+DE2,
∴500=100k2+25k2,
∴k=2
∴AB=CD =16cm,BC=AD=20cm,
∴四邊形ABCD的周長=72cm
故答案為:72.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).分別得圖②,圖③,…,則旋轉(zhuǎn)到圖⑩時直角頂點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A.因為M是線段AB的中點,所以AM=MB=AB
B.在線段AM延長線上取一點B,如果AB=2AM,那么點M是線段AB的中點
C.因為A,M,B在同一直線上,且AM=MB,所以M是線段AB的中點
D.因為AM=MB,所以點M是AB的中點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,每個小正方形的邊長為1,每個小正方形的頂點都叫做格點.(請利用網(wǎng)格作圖,畫出的線請用鉛筆描粗描黑)
(1)過點C畫AB的垂線,并標出垂線所過格點E;
(2)過點C畫AB的平行線CF,并標出平行線所過格點F;
(3)直線CE與直線CF的位置關系是 ;
(4)連接AC,BC,則三角形ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在以O為原點的直角坐標系中,拋物線的頂點為A (﹣1,﹣4),且經(jīng)過點B(﹣2,﹣3),與x軸分別交于C、D兩點.
(1)求直線OB以及該拋物線相應的函數(shù)表達式;
(2)如圖1,點M是拋物線上的一個動點,且在直線OB的下方,過點M作x軸的平行線與直線OB交于點N,求MN的最大值;
(3)如圖2,過點A的直線交x軸于點E,且AE∥y軸,點P是拋物線上A、D之間的一個動點,直線PC、PD與AE分別交于F、G兩點.當點P運動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=mx+n與反比例函數(shù)y= ,其中mn<0,m、n均為常數(shù),它們在同一坐標系中的圖象可以是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明去文具用品商店給同學買某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標價都是2元/支,但甲、乙兩商店的優(yōu)惠條件卻不同.
甲商店:若購買不超過10支,則按標價付款;若一次購10支以上,則超過10支的部分按標價的60%付款. 乙商店:按標價的80%付款.
在水性筆的質(zhì)量等因素相同的條件下.
(1)設小明要購買的該品牌筆數(shù)是x(x>10)支,請用含x的式子分別表示在甲、乙兩個商店購買該品牌筆買水性筆的費用.
(2)若小明要購買該品牌筆30支,你認為在甲、乙兩商店中,到哪個商店購買比較省錢?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點H是邊BC上一點(不與點B、點C重合).連接DH交正方形對角線AC于點E,過點E作DH的垂線交線段AB、CD于點F、G.延長FG與BC的延長線交于點P,連接DF、DP、FH.
(1)∠FDH=______°;DF與DP的位置關系是______,DF與DP的大小關系是______;
(2)在(1)的結(jié)論下,若AD=4,求△BFH的周長;
(3)在(1)的結(jié)論下,若BP=8,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖所示,在平面直角坐標系中,四邊形ABCO為梯形,BC∥AO,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,0).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com