【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,BD=3,求BC的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
(1)當(dāng)銷售單價(jià)為70元時(shí),每天的銷售利潤是多少?
(2)求出每天的銷售利潤y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過7000元,那么銷售單價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于點(diǎn)C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑CD,AB是⊙O的弦,AB⊥CD,垂足為N.連接AC.
(1)若ON=1,BN=.求弧BC長度;
(2)若點(diǎn)E在AB上,且AC2=AE.AB.求證:∠CEB=2∠CAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊長與另一邊長之間的函數(shù)圖像如圖.
(1)該綠化帶的面積是多少?寫出與的函數(shù)解析式.
(2)完成下表,并回答問題:如果該綠化帶的長不得超過,那么應(yīng)控制在什么范圍?
10 | 20 | 30 | 40 | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( )
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實(shí)數(shù))
D. 3b+2c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于A點(diǎn),過點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0).
(1)求直線AB的函數(shù)關(guān)系式;
(2)動點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動,過點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N. 設(shè)點(diǎn)P移動的時(shí)間為t秒,MN的長度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=8,AC=16,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒2個(gè)長度單位的速度向點(diǎn)B運(yùn)動:同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒3個(gè)長度單位的速度向點(diǎn)A運(yùn)動,其中一點(diǎn)到達(dá)終點(diǎn),則另一點(diǎn)也隨之停止運(yùn)動,當(dāng)△ABC與以A、P、Q為頂點(diǎn)的三角形相似時(shí),運(yùn)動時(shí)間為______秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是一塊銳角三角形余料,邊毫米,高毫米,要把它加工成一個(gè)矩形零件,使矩形的一邊在上,其余兩個(gè)頂點(diǎn)分別在,上,設(shè)該矩形的長毫米,寬毫米.
(1)求證:;
(2)當(dāng)與分別取什么值時(shí),矩形的面積最大?最大面積是多少?
(3)當(dāng)矩形的面積最大時(shí),它的長和寬是關(guān)于的一元二次方程的兩個(gè)根,而,的值又恰好分別是,10,12,13,這5個(gè)數(shù)據(jù)的眾數(shù)與平均數(shù),試求與的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com