【題目】學(xué)校準(zhǔn)備在校園內(nèi)修建一個矩形的綠化帶,矩形的面積為定值,它的一邊長與另一邊長之間的函數(shù)圖像如圖.

1)該綠化帶的面積是多少?寫出的函數(shù)解析式.

2)完成下表,并回答問題:如果該綠化帶的長不得超過,那么應(yīng)控制在什么范圍?

10

20

30

40

【答案】1;(2x應(yīng)控制在至少10m,40,20,,10

【解析】

1)矩形綠化帶的面積為定值且滿足反比例函數(shù)的關(guān)系,代入A點的坐標(biāo)即可求得綠化帶的面積和函數(shù)關(guān)系式;(2)代入x=10,20,30,40求得y值即可確定寬的取值范圍.

解:(1)設(shè)函數(shù)關(guān)系式為

∵經(jīng)過點A10,40),

k=10×40=400,

∴矩形的面積為400平方米,函數(shù)關(guān)系式為

2)當(dāng)x=10y=40

當(dāng)x=20時,y=20

當(dāng)x=30時,y=

當(dāng)x=40時,y=10,

填表依次為:40,20,,10

∵該綠化帶的長不得超過40m,且yx的增大而減小

∴它的另一邊應(yīng)控制在至少10米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是( 。

A. AF=CF B. ∠DCF=∠DFC

C. 圖中與AEF相似的三角形共有5個 D. tan∠CAD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.

請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);

(3)在原問題中,過點A作直線AE⊥BD,交直線BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請直接寫出線段BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長ADE,且有∠EBD=CAB.

(1)如圖1,若BD=,AC=6

A.求證:BE為圓O的切線

B.DE的長

(2)如圖2,連結(jié)CDAB于點F,BD=,CF=3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點CO上,ABC的外角平分線BDODDEACCB的延長線于E

1)求證:DEO的切線;

2)若A30°BD3,BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評價特別引人關(guān)注,消費者在網(wǎng)店購買某種商品后,對其有

好評”、“中評”、“差評三種評價,假設(shè)這三種評價是等可能的.

(1)小明對一家網(wǎng)店銷售某種商品顯示的評價信息進行了統(tǒng)計,并列出了兩幅不完整的統(tǒng)計圖.

利用圖中所提供的信息解決以下問題:

①小明一共統(tǒng)計了 個評價;

②請將圖1補充完整;

③圖2差評所占的百分比是 ;

(2)若甲、乙兩名消費者在該網(wǎng)店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給好評的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為測量某鐵塔AB的高度,他在離塔底B10C處測得塔頂?shù)难鼋?/span>α=43°,已知小明的測角儀高CD=1.5米,求鐵塔AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin43° =0.6820 cos43° =0.7314, tan43° =0.9325

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠B90°,AC10cm,BC6cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P2cm/s的速度,沿AB向終點B移動;點Q1cm/s的速度沿BC向終點C移動,其中一點到終點,另一點也隨之停止.連接PQ.設(shè)動點運動時間為x秒.

1)用含x的代數(shù)式表示BQPB的長度;

2)當(dāng)x為何值時,PBQ為等腰三角形;

3)是否存在x的值,使得四邊形APQC的面積等于20cm2?若存在,請求出此時x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案