【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動(dòng)點(diǎn),連結(jié)OB、AB,并延長AB至點(diǎn)D,使DB=AB,過點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時(shí),求弧AB的長;
(2)當(dāng)DE=8時(shí),求線段EF的長;
(3)在點(diǎn)B運(yùn)動(dòng)過程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請說明理由.
【答案】;3;存在
【解析】
試題分析:(1)連結(jié)BC,
∵A(10,0),∴OA=10,CA=5,
∵∠AOB=30°,
∴∠ACB=2∠AOB=60°,
∴弧AB的長=;……4分
(2)連結(jié)OD,
∵OA是⊙C直徑,∴∠OBA=90°,
又∵AB=BD,
∴OB是AD的垂直平分線,
∴OD=OA=10,
在Rt△ODE中,
OE=,
∴AE=AO-OE=10-6=4,
由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,
得△OEF∽△DEA,
∴,即,∴EF=3;……8分
(3)設(shè)OE=x,
①當(dāng)交點(diǎn)E在O,C之間時(shí),由以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,當(dāng)∠ECF=∠BOA時(shí),此時(shí)△OCF為等腰三角形,點(diǎn)E為OC中點(diǎn),即OE=,
∴E1(,0);
當(dāng)∠ECF=∠OAB時(shí),有CE=5-x,AE=10-x,
∴CF∥AB,有CF=,
∵△ECF∽△EAD,
∴,即,解得:,
∴E2(,0);
②當(dāng)交點(diǎn)E在點(diǎn)C的右側(cè)時(shí),
∵∠ECF>∠BOA,
∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO,
連結(jié)BE,
∵BE為Rt△ADE斜邊上的中線,
∴BE=AB=BD,
∴∠BEA=∠BAO,
∴∠BEA=∠ECF,
∴CF∥BE,∴,
∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴,
而AD=2BE,∴,
即,解得,<0(舍去),
∴E3(,0);
③當(dāng)交點(diǎn)E在點(diǎn)O的左側(cè)時(shí),
∵∠BOA=∠EOF>∠ECF.
∴要使△ECF與△BAO相似,只能使∠ECF=∠BAO
連結(jié)BE,得BE==AB,∠BEA=∠BAO
∴∠ECF=∠BEA,
∴CF∥BE,
∴,
又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,
∴△CEF∽△AED,∴,
而AD=2BE,∴,
∴,解得,<0(舍去),
∵點(diǎn)E在x軸負(fù)半軸上,∴E4(,0),
綜上所述:存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,此時(shí)點(diǎn)E坐標(biāo)為:
(,0)、(,0)、(,0)、(,0).(12分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請?jiān)?/span>軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(-1,y1),(2,y2),(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y1>y2 D. y2>y3>y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組
(1)請直接寫出方程的所有正整數(shù)解
(2)若方程組的解滿足x+y=0,求m的值
(3)無論實(shí)數(shù)m取何值,方程x-2y+mx+5=0總有一個(gè)固定的解,請直接寫出這個(gè)解?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
①
② -10 - (-31)
③1÷(﹣)×;
④(-2)2×5+(-2)3÷4
⑤
(2)比較大小
①1.5與4 ②2與-7
③與 ④ 與
(3)用簡便方法計(jì)算:
①
②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com