【題目】(2018鄭州模擬)冬季即將來臨,某電器超市銷售每臺進價分別為300元、255元的A,B兩種型號的電熱扇,下表是近兩周的銷售情況:
銷售時段 | |||
銷售數(shù)量 | |||
A種型號 | B種型號 | 銷售收入 | |
第一周 | 2臺 | 3臺 | 1695元 |
第二周 | 5臺 | 6臺 | 3765元 |
(進價、售價均保持不變,利潤銷售收入進貨成本)
(1)分別求出A,B兩種型號電熱扇的銷售單價;
(2)若超市準(zhǔn)備用不超過8100元的金額再采購這兩種型號的電熱扇共30臺,求A種型號的電熱扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電熱扇能否實現(xiàn)利潤為2100元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
【答案】(1),兩種型號電熱扇的銷售單價分別為375元、315元;(2)種型號的電熱扇最多能采購10臺;(3)超市銷售完這30臺電熱扇不能實現(xiàn)利潤為2100元的目標(biāo).
【解析】
解:(1)設(shè),兩種型號電熱扇的銷售單價分別為元、元,
根據(jù)題意,得,
解得.
答:,兩種型號電熱扇的銷售單價分別為375元、315元;
(2)設(shè)采購種型號電熱扇臺,則采購種型號電熱扇臺,
根據(jù)題意,得,
解得.
答:種型號的電熱扇最多能采購10臺;
(3)根據(jù)題意,得,
解得,
由(2)可得,,
∴超市銷售完這30臺電熱扇不能實現(xiàn)利潤為2100元的目標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點是線段上的一個動點,以點為圓心,為半徑作,連接.
(1)當(dāng)經(jīng)過的中點時,的長為_ ;
(2)當(dāng)平分時,判斷與的位置關(guān)系.說明理由,并求出的長;
(3)如圖2,當(dāng)與交于兩點,且時,求點到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚泰山文化,某校舉辦了“泰山詩文大賽”活動,從中隨機抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計圖表(不完整):
組別 | 分?jǐn)?shù) | 人數(shù) |
第1組 | 90<x≤100 | 8 |
第2組 | 80<x≤90 | a |
第3組 | 70<x≤80 | 10 |
第4組 | 60<x≤70 | b |
第5組 | 50<x≤60 | 3 |
請根據(jù)以上信息,解答下列問題:
(1)求出a,b的值;
(2)計算扇形統(tǒng)計圖中“第5組”所在扇形圓心角的度數(shù);
(3)若該校共有1800名學(xué)生,那么成績高于80分的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個交點坐標(biāo)為(1,2),另一個交點是該二次函數(shù)圖像的頂點
(1)求k,a,c的值;
(2)過點A(0,m)(0<m<4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點,點O為坐標(biāo)原點,記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的對角線交于點D.雙曲線經(jīng)過C,D 兩點,雙曲線經(jīng)過點B,則平行四邊形OABC的面積為( )
A.4B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠B=90°,∠ACB=30°,點D為BC邊上一動點,以AD為邊,在AD的右側(cè)作等邊三角形ADE.
(1)當(dāng)AD平分∠BAC時,如圖1,四邊形ADCE是 形;
(2)過E作EF⊥AC于F,如圖2,求證:F為AC的中點;
(3)若AB=2,
①當(dāng)D為BC的中點時,過點E作EG⊥BC于G,如圖3,求EG的長;
②點D從B點運動到C點,則點E所經(jīng)過路徑長為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB丄x軸于點B,點A與點B關(guān)于y軸對稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)如今”微信運動“被越來越多的人關(guān)注和喜愛,某數(shù)學(xué)興趣小組隨機調(diào)查了該校50名教師某日“微信運動“中的行走步數(shù)情況,并將統(tǒng)計的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計圖表.請根據(jù)以上信息,解答下列問題:
(1)求出a,b,c,d的值,并補全頻數(shù)分布直方圖.
(2)本市約有58000名教師,用調(diào)查的樣本數(shù)據(jù)估計日行步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在被調(diào)查的50名教師中.選取日行步數(shù)超過16000步(包含16000步)的兩名教師與大家分享心得,求被選取的兩名教師的日行走步數(shù)恰好都在20000步(包含20000步)以上的概率.
步數(shù)(x) | 頻數(shù) | 頻率 |
0≤x<4000 | a | 0.16 |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | b | 0.24 |
12000≤x<16000 | 10 | c |
16000≤x<20000 | 3 | 0.06 |
2000≤x<24000 | 2 | d |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com