【題目】2018鄭州模擬)冬季即將來臨,某電器超市銷售每臺進價分別為300元、255元的AB兩種型號的電熱扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

A種型號

B種型號

銷售收入

第一周

2

3

1695

第二周

5

6

3765

(進價、售價均保持不變,利潤銷售收入進貨成本)

1)分別求出A,B兩種型號電熱扇的銷售單價;

2)若超市準(zhǔn)備用不超過8100元的金額再采購這兩種型號的電熱扇共30臺,求A種型號的電熱扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電熱扇能否實現(xiàn)利潤為2100元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

【答案】1兩種型號電熱扇的銷售單價分別為375元、315元;(2種型號的電熱扇最多能采購10臺;(3)超市銷售完這30臺電熱扇不能實現(xiàn)利潤為2100元的目標(biāo).

【解析】

解:(1)設(shè)兩種型號電熱扇的銷售單價分別為元、元,

根據(jù)題意,得

解得

答:,兩種型號電熱扇的銷售單價分別為375元、315元;

(2)設(shè)采購種型號電熱扇臺,則采購種型號電熱扇臺,

根據(jù)題意,得

解得

答:種型號的電熱扇最多能采購10臺;

(3)根據(jù)題意,得

解得,

(2)可得,,

∴超市銷售完這30臺電熱扇不能實現(xiàn)利潤為2100元的目標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點是線段上的一個動點,以點為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過的中點時,的長為_ ;

(2)當(dāng)平分時,判斷的位置關(guān)系.說明理由,并求出的長;

3)如圖2,當(dāng)交于兩點,且時,求點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚泰山文化,某校舉辦了泰山詩文大賽活動,從中隨機抽取部分學(xué)生的比賽成績,根據(jù)成績(成績都高于50分),繪制了如下的統(tǒng)計圖表(不完整):

組別

分?jǐn)?shù)

人數(shù)

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

請根據(jù)以上信息,解答下列問題:

1)求出a,b的值;

2)計算扇形統(tǒng)計圖中5所在扇形圓心角的度數(shù);

3)若該校共有1800名學(xué)生,那么成績高于80分的共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個交點坐標(biāo)為(1,2),另一個交點是該二次函數(shù)圖像的頂點

1)求k,ac的值;

2)過點A0m)(0m4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點,點O為坐標(biāo)原點,記W=OA2+BC2,求W關(guān)于m的函數(shù)解析式,并求W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形內(nèi)接于,點上兩點,且,若,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的對角線交于點D.雙曲線經(jīng)過CD 兩點,雙曲線經(jīng)過點B,則平行四邊形OABC的面積為(

A.4B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在RtABC中,∠B=90°,∠ACB=30°,點DBC邊上一動點,以AD為邊,在AD的右側(cè)作等邊三角形ADE

1)當(dāng)AD平分∠BAC時,如圖1,四邊形ADCE    形;

2)過EEFACF,如圖2,求證:FAC的中點;

3)若AB=2

當(dāng)DBC的中點時,過點EEGBCG,如圖3,求EG的長;

DB點運動到C點,則點E所經(jīng)過路徑長為    (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb的圖象與反比例函數(shù)y (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PBx軸于點B,點A與點B關(guān)于y軸對稱.

(1)求一次函數(shù)、反比例函數(shù)的解析式;

(2)求證:點C為線段AP的中點;

(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)如今”微信運動“被越來越多的人關(guān)注和喜愛,某數(shù)學(xué)興趣小組隨機調(diào)查了該校50名教師某日“微信運動“中的行走步數(shù)情況,并將統(tǒng)計的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計圖表.請根據(jù)以上信息,解答下列問題:

1)求出ab,cd的值,并補全頻數(shù)分布直方圖.

2)本市約有58000名教師,用調(diào)查的樣本數(shù)據(jù)估計日行步數(shù)超過12000步(包含12000步)的教師有多少名?

3)若在被調(diào)查的50名教師中.選取日行步數(shù)超過16000步(包含16000步)的兩名教師與大家分享心得,求被選取的兩名教師的日行走步數(shù)恰好都在20000步(包含20000步)以上的概率.

步數(shù)(x

頻數(shù)

頻率

0x4000

a

0.16

4000x8000

15

0.3

8000x12000

b

0.24

12000x16000

10

c

16000x20000

3

0.06

2000x24000

2

d

查看答案和解析>>

同步練習(xí)冊答案