【題目】已知二次函數(shù)y=x2+2x﹣3.
(1)求二次函數(shù)的頂點(diǎn)坐標(biāo);
(2)求函數(shù)與x軸交點(diǎn)坐標(biāo);
(3)用五點(diǎn)法畫(huà)函數(shù)圖象
x | … | … | |||||
y | … | … |
(4)當(dāng)﹣3<x<0時(shí),則y的取值范圍為 .
【答案】(1)(-1,-4);(2)(﹣3,0),(1,0);(3)見(jiàn)解析;(4)﹣4≤y<0.
【解析】
(1)利用配方法將二次函數(shù)一般式改寫(xiě)為頂點(diǎn)式,即可得到頂點(diǎn)坐標(biāo);
(2)當(dāng)y=0時(shí),解一元二次方程x2+2x﹣3=0即可得出交點(diǎn)坐標(biāo);
(3)根據(jù)函數(shù)解析式,找出當(dāng)x=-3、-2、-1、0、1時(shí)的y值,描點(diǎn)畫(huà)圖即可得;
(4)根據(jù)二次函數(shù)的性質(zhì)結(jié)合函數(shù)圖象,即可得出當(dāng)-3<x<0時(shí),y的取值范圍.
解:(1)∵,
∴拋物線的頂點(diǎn)坐標(biāo)為(-1,-4);
(2)當(dāng)y=0時(shí),x2+2x﹣3=0,解得x1=﹣3,x2=1,
∴拋物線與x軸的交點(diǎn)坐標(biāo)為(﹣3,0)、(1,0);
(3)當(dāng)x=-3時(shí),y=x2+2x﹣3=0;
當(dāng)x=-2時(shí),y=x2+2x﹣3=-3;
當(dāng)x=-1時(shí),y=x2+2x﹣3=-4;
當(dāng)x=0時(shí),y=x2+2x﹣3=﹣3;
當(dāng)x=1時(shí),y=x2+2x﹣3=0;
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | 0 | -3 | -4 | -3 | 0 | … |
作圖如下:
(4)由圖像可知,當(dāng)-3<x<0時(shí),﹣4≤y<0.
故答案為:﹣4≤y<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年3月21日,長(zhǎng)春市遭遇了一次大量降雪天氣,市環(huán)保系統(tǒng)出動(dòng)了多輛清雪車(chē)連夜清雪,已知一臺(tái)大型清雪車(chē)比一臺(tái)小型清雪車(chē)每小時(shí)多清掃路面6千米,一臺(tái)大型清雪車(chē)清掃路面90千米與一臺(tái)小型清雪車(chē)清掃路面60千米所用的時(shí)間相同.求一臺(tái)小型清雪車(chē)每小時(shí)清掃路面的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:
分?jǐn)?shù)段 (分?jǐn)?shù)為x分) | 頻數(shù) | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x<90 | 16 | b% |
90≤x<100 | 4 | 10% |
(1)表中的a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來(lái)描述成績(jī)分布情況,則分?jǐn)?shù)段70≤x<80對(duì)應(yīng)的圓心角的度數(shù)是 ;
(4)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機(jī)抽取2名同學(xué)接受電視臺(tái)記者采訪,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求正好抽到一名男同學(xué)和一名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)原計(jì)劃加工一批校服,現(xiàn)有甲、乙兩個(gè)工廠加工這批校服,已知甲工廠每天能加工這種校服16件,乙工廠每天加工這種校服24件,且單獨(dú)加工這批校服甲廠比乙廠要多用20天
(1)求這批校服共有多少件?
(2)為了盡快完成這批校服,若先由甲、乙兩工廠按原速度合作一段時(shí)間后,甲工廠停工,而乙工廠每天的速度提高25%,乙工廠單獨(dú)完成剩下的部分,且乙工廠全部工作時(shí)間是甲工廠工作時(shí)間的2倍還多4天,求乙工廠加工多少天
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣(mài)出300件. 市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每降價(jià)1元,每星期可多賣(mài)出20件. 已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使利潤(rùn)最大?這個(gè)最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)P是線段AC上一動(dòng)點(diǎn)(點(diǎn)P不與A,C重合),連接BP,過(guò)點(diǎn)A作直線BP的垂線段,垂足為點(diǎn)D,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AE,連接DE,CE.
(1)求證:BD=CE;
(2)延長(zhǎng)ED交BC于點(diǎn)F,求證:F為BC的中點(diǎn);
(3)在(2)的條件下,若△ABC的邊長(zhǎng)為1,直接寫(xiě)出EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在∠MAN內(nèi),PA平分∠MAN,PB⊥AM于點(diǎn)B,PC⊥AN于點(diǎn)C,點(diǎn)D是射線AM上點(diǎn)B右側(cè)的一個(gè)定點(diǎn).
(1)作經(jīng)過(guò)A,P,D三點(diǎn)的圓;(保留作圖痕進(jìn),不寫(xiě)作法)
(2)設(shè)圓與AN交于點(diǎn)E,∠MAN=60°,PA=4,求AE+AD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是一塊邊長(zhǎng)為8米的正方形苗圃,園林部門(mén)擬將其改造為矩形AEFG的形狀,其中點(diǎn)E在AB邊上,點(diǎn)G在A的延長(zhǎng)線上,DG=2BE,設(shè)BE的長(zhǎng)為x米,改造后苗圃AEFG的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(不需寫(xiě)自變量的取值范圍);
(2)若改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,此時(shí)BE的長(zhǎng)為 米.
(3)當(dāng)x為何值時(shí)改造后的矩形苗圃AEFG的最大面積?并求出最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com