【題目】如圖,在直角坐標(biāo)平面中,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(20,0),點(diǎn)B在第一象限內(nèi),BO=10,sin∠BOA= .
(1)在圖中,求作△ABO的外接圓(尺規(guī)作圖,不寫(xiě)作法但需保留作圖痕跡);
(2)求點(diǎn)B的坐標(biāo)與cos∠BAO的值;
(3)若A,O位置不變,將點(diǎn)B沿x軸向右平移使得△ABO為等腰三角形,請(qǐng)求出平移后點(diǎn)B的坐標(biāo).
【答案】
(1)解:如圖所示:
(2)解:如圖,作BH⊥OA,垂足為H,
在Rt△OHB中,∵BO=10,sin∠BOA= ,
∴BH=6,
∴OH=8,∴點(diǎn)B的坐標(biāo)為(8,6),
∵OA=20,OH=8,∴AH=12,
在Rt△AHB中,∵BH=6,
∴AB= =6
∴cos∠BAO=
(3)解:①當(dāng)BO=AB時(shí),∵AO=20,∴OH=10,
∴點(diǎn)B沿x軸正半軸方向平移2個(gè)單位,
②當(dāng)AO=AB′時(shí),∵AO=20,∴AB′=20,
過(guò)B′作B′N(xiāo)⊥x軸,
∵點(diǎn)B的坐標(biāo)為(8,6),
∴B′N(xiāo)=6,∴AN= =2 .
∴點(diǎn)B沿x軸正半軸方向平移(2 +12)個(gè)單位,
③當(dāng)AO=OB″時(shí),
∵AO=20,
∴OB″=20,
過(guò)B″作B″P⊥x軸.
∵B的坐標(biāo)為(8,6),
∴B″P=6,
∴OP= =2 ,
∴點(diǎn)B沿x軸正半軸方向平移(2 ﹣8)個(gè)單位,
綜上所述當(dāng)點(diǎn)B沿x軸正半軸方向平移2個(gè)單位、(2 +12)個(gè)單位,或(2 ﹣8)個(gè)單位時(shí),△ABO為等腰三角形
【解析】(1)作OB,AB的垂直平分線交于一點(diǎn)M,以點(diǎn)M為圓心,MA為半徑畫(huà)圓,則圓M即為所求;(2)如圖,作BH⊥OA,垂足為H,在Rt△OHB中,由BO=10,sin∠BOA= ,得到BH=6,OH=8,求出點(diǎn)B的坐標(biāo)為(8,6),根據(jù)OA=20,OH=8,求出AH=12,在Rt△AHB中,由BH=6,得到AB= =6 ,求出cos∠BAO= ;(3)①當(dāng)BO=AB時(shí),由AO=20,得到OH=10,點(diǎn)B沿x軸正半軸方向平移2個(gè)單位;②當(dāng)AO=AB′時(shí),由AO=20,得到AB′=20,過(guò)B′作B′N(xiāo)⊥x軸,由點(diǎn)B的坐標(biāo)為(8,6),得到B′N(xiāo)=6,AN= =2 .求得點(diǎn)B沿x軸正半軸方向平移(2 +12)個(gè)單位,③當(dāng)AO=OB″時(shí),由AO=20,得到OB″=20,過(guò)B″作B″P⊥x軸.由B的坐標(biāo)為(8,6),得到B″P=6,OP= =2 ,點(diǎn)B沿x軸正半軸方向平移(2 ﹣8)個(gè)單位.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.
(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;
(2)若射線OD是射線OB的反向延長(zhǎng)線,則射線OD表示的方向是 ;
(3)∠BOD可以看作是由OB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)至OD形成的角,作∠BOD的平分線OE;
(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】(1)證明:AM=AD+MC;
【拓展延伸】(2)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)中的結(jié)論是否成立?請(qǐng)作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=60°,坡長(zhǎng)AB=20 m,為加強(qiáng)水壩強(qiáng)度,降壩底從A處后水平延伸到F處,使新的背水坡角∠F=45°,求AF的長(zhǎng)度(結(jié)果精確到1米,參考數(shù)據(jù): 1.414, ≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程
(1)x2=49
(2)3x2-7x=0
(3)(直接開(kāi)平方法)
(4)(用配方法)
(5) (因式分解法)
(6)
(7)(x-2)(x-5)=-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,已知點(diǎn)C在線段AB上,且AC=6cm,BC=4cm,點(diǎn)M,N分別是AC,BC的中點(diǎn),求線段MN的長(zhǎng)度.
(2)在(1)中,如果AC=acm,BC=bcm,其它條件不變,你能猜出MN的長(zhǎng)度嗎?請(qǐng)你用一句簡(jiǎn)潔的話(huà)表述你發(fā)現(xiàn)的規(guī)律.
(3)對(duì)于(1)題,如果我們這樣敘述它:“已知線段AC=6cm,BC=4cm,點(diǎn)C在直線AB上,點(diǎn)M,N分別是AC,BC的中點(diǎn),求MN的長(zhǎng)度.”結(jié)果會(huì)有變化嗎?如果有,求出結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com