【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.

(1)求證:四邊形ABCD是菱形;

(2)過點AAHBC于點H,求AH的長.

【答案】(1)證明見解析;(2)

【解析】試題(1)由平行四邊形的對角線互相平分得到△AOB的兩條邊OA、OB的長度,則根據(jù)勾股定理的逆定理判定∠AOB=90°,即平行四邊形的對角線互相垂直平分,故四邊形ABCD是菱形.

(2)根據(jù)菱形的不變性,用不同方法求面積:平行四邊形的面積=菱形的面積,可求解.

試題解析:(1)證明:∵在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8,

∴AO=AC=3,BO=BD=4,

∵AB=5,且32+42=52

∴AO2+BO2=AB2,

∴△AOB是直角三角形,且∠AOB=90°,

∴AC⊥BD,

∴四邊形ABCD是菱形;

(2)解:如圖所示:

∵四邊形ABCD是菱形,

∴BC=AB=5,

∵S△ABC=ACBO=BCAH,

×6×4=×5×AH,

解得:AH=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191120-23日,首屆世界大會在北京舉行.某校的學(xué)生開展對于知曉情況的問卷調(diào)查,問卷調(diào)查的結(jié)果分為、、四類,其中類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,并把調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖表(不完整).

根據(jù)上述信息,解答下列問題:

1)這次一共調(diào)查了多少人;

2)求“類”在扇形統(tǒng)計圖中所占圓心角的度數(shù);

3)請將條形統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,點D、點EBC邊上兩點,且ACDC,

1)若∠EAC=∠EAFEFABAB5,BC4,求線段DE的長度;

2)若EFAD于點P,CFAE于點Q,且AECF,求證:DE+PFAP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店老板第一次用1000元購進一批文具,很快銷售完畢;第二次購進時發(fā)現(xiàn)每件文具進價比第一次上漲了2 5元.老板用2500元購進了第二批文具,所購進文具的數(shù)量是第一次購進數(shù)量的2倍,同樣很快銷售完畢,兩批文具的售價均為每件15元.

1)問第二次購進了多少件文具?

2)文具店老板第一次購進的文具有3% 的損耗,第二次購進的文具有5% 的損耗,問文具店老板在這兩筆生意中是盈利還是虧本?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形的六個內(nèi)角都等于,若,,則這個六邊形的周長等于____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.

(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?

(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么麗商場至少需購進多少件A種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:矩形ABCD中,AB=4,BC=3,點MN分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將AME沿直線MN翻折,點A落在點P處,且點P在射線CB.

(1)如圖1,當(dāng)EPBC時,求CN的長;

(2) 如圖2,當(dāng)EPAC時,求AM的長;

(3) 請寫出線段CP的長的取值范圍,及當(dāng)CP的長最大時MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是邊AD的中點,NAB上一動點(不與A、B重合),將AMN沿MN所在直線翻折得到A1MN,連接A1C,畫出點NAB的過程中A1的運動軌跡,A1C的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案