【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)寫出圖中小于平角的角.

(2)求出∠BOD的度數(shù).

(3)小明發(fā)現(xiàn)OE平分∠BOC,請你通過計(jì)算說明道理.

【答案】(1)答案見解析 (2)155° (3)答案見解析

【解析】

(1)根據(jù)角的定義即可解決;(2)根據(jù)∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補(bǔ)角的定義求得∠DOC和∠BOC即可;(3)根據(jù)∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數(shù)即可說明.

(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.

(2)因?yàn)椤螦OC=50°,OD平分∠AOC,

所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,

所以∠BOD=∠DOC+∠BOC=155°.

(3)因?yàn)椤螪OE=90°,∠DOC=25°,

所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.

又因?yàn)椤螧OE=∠BOD﹣∠DOE=155°﹣90°=65°,

所以∠COE=∠BOE,所以O(shè)E平分∠BOC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)與證明)ABCD中,AB≠BC,將△ABC沿AC翻折至△AB`C,連結(jié)B`D.

結(jié)論1:△AB`C與ABCD重疊部分的圖形是等腰三角形;結(jié)論2:B`D∥AC;

1)請證明結(jié)論1和結(jié)論2

(應(yīng)用與探究)

2)在ABCD中,已知BC=2,∠B=45°,將△ABC沿AC翻折至△AB`C,連接B`D若以AC、D、B`為頂點(diǎn)的四邊形是正方形,求AC的長(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD,過點(diǎn)AAEBC,垂足為E,連接DE,F為線段DE上一點(diǎn)AFE=∠B

(1)求證ADF∽△DEC;

(2)若AB=8,AD=,AF=,AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)平面內(nèi)將一副三角板按如圖1所示擺放,EBC= °;

(2)平面內(nèi)將一副三角板按如圖2所示擺放,若EBC=165°,那么α= °;

(3)平面內(nèi)將一副三角板按如圖3所示擺放,EBC=115°,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在4×4的正方形網(wǎng)格中,ABC的頂點(diǎn)都在格點(diǎn)上,下列結(jié)論錯(cuò)誤的是( 。

A. AB5 B. C90° C. AC2 D. A30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號分別為2和7,乙口袋中裝有兩個(gè)相同的小球,它們的標(biāo)號分別為4和5,丙口袋中裝有三個(gè)相同的小球,它們的標(biāo)號分別為3,8,9.從這3個(gè)口袋中各隨機(jī)地取出1個(gè)小球.

1求取出的3個(gè)小球的標(biāo)號全是奇數(shù)的概率是多少?

2以取出的三個(gè)小球的標(biāo)號分別表示三條線段的長度,求這些線段能構(gòu)成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,,,點(diǎn)Dx軸上,若在線段包括兩個(gè)端點(diǎn)上找點(diǎn)P,使得點(diǎn)AD,P構(gòu)成等腰三角形的點(diǎn)P恰好只有1個(gè),下列選項(xiàng)中滿足上述條件的點(diǎn)D坐標(biāo)不可以是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m0)的圖象可能是( 。

A. B. C. D.

【答案】D

【解析】A.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,與圖象不符,故A選項(xiàng)錯(cuò)誤;

B.由函數(shù)y=mx+m的圖象可知m<0,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象不符,故B選項(xiàng)錯(cuò)誤;

C.由函數(shù)y=mx+m的圖象可知m>0,即函數(shù)y=mx2+2x+2開口方向朝下,與圖象不符,故C選項(xiàng)錯(cuò)誤;

D.由函數(shù)y=mx+m的圖象可知m<0,即函數(shù)y=mx2+2x+2開口方向朝上,對稱軸為x=<0,則對稱軸應(yīng)在y軸左側(cè),與圖象相符,故D選項(xiàng)正確;

故選:D.

型】單選題
結(jié)束】
10

【題目】如圖,已知菱形ABCD的周長為16,面積為,EAB的中點(diǎn),若P為對角線BD上一動點(diǎn),則EP+AP的最小值為( 。

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時(shí)出發(fā),勻速行駛,設(shè)行駛的時(shí)間為x(時(shí)),兩車之間的距離為y(千米),圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中yx之間的函數(shù)關(guān)系,已知兩車相遇時(shí)快車比慢車多行駛40千米,快車到達(dá)乙地時(shí),慢車還有( )千米到達(dá)甲地.

A. 70 B. 80 C. 90 D. 100

查看答案和解析>>

同步練習(xí)冊答案