【題目】如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.

(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);

(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?

(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

【答案】(1)y=x2-2x-3 頂點(diǎn)是(1,-4);(2)直角三角形;(3)點(diǎn)P在該拋物線上滑動(dòng)至(,4)或(,4)或(1,-4)時(shí),滿足SPAB=8.

【解析】

(1)設(shè)拋物線的解析式為y=ax2+bx+c,把A、B、C、三點(diǎn)坐標(biāo)代入求出a、b、c的值即可得答案.(2)過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F,根據(jù)B、C、D三點(diǎn)的坐標(biāo)可求出BD、CD、BC的長,根據(jù)三邊的長即可判斷△BCD的形狀.(3)設(shè)P的縱坐標(biāo)為,利用三角形面積可求出P點(diǎn)的縱坐標(biāo),代入解析式可求出橫坐標(biāo)即可.

(1)設(shè)拋物線解析式為y=ax2+bx+c

∴依題意得: 解得

∴拋物線解析式為:y=x2-2x-3 頂點(diǎn)是(1,-4)

(2)B、C、D為頂點(diǎn)的三角形是直角三角形。

過點(diǎn)D分別作x軸、y軸的垂線,垂足分別為E、F

RtBOC中,OB=3,OC=3,

BC2=18

RtCDF中,DF=1,CF=OF-OC=4-3=1

CD2=2

RtBDE中,DE=4,BE=OB-OE=3-1=2,

BD2=20

BC2+CD2=BD2,故⊿BCD為直角三角形。

(3)設(shè)P的縱坐標(biāo)為

SPAB=8

AB·=8

AB=3+1=4

=4

yp=

yp=4代入解析式得4=x2-2x-3,解得:x=

yp=-4代入解析式得-4=x2-2x-3,解得:x=1

∴點(diǎn)P在該拋物線上滑動(dòng)至(,4)或(,4)或(1,-4)時(shí),滿足SPAB=8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理在平面幾何中有著不可替代的重要地位,在我國古算書(周髀算經(jīng)》中就有若勾三,股四,則弦五的記載,如圖1是由邊長均為1的小正方形和RtABC構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理,將圖1按圖2所示嵌入長方形LMJK,則該長方形的面積為( )

A.120B.110C.100D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角ABC中,∠BAC90°,ABAC,∠ADB45°

1)求證:BDCD

2)若BD6,CD2,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖像與正比例函數(shù)的圖像都經(jīng)過點(diǎn),點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)在正比例函數(shù)的圖像上.

1)求此正比例函數(shù)的解析式;

2)求線段AB的長;

3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離y(km),圖中的折線表示yx之間的函數(shù)關(guān)系.

根據(jù)圖象進(jìn)行以下探究:

⑴請問甲乙兩地的路程為 ;

⑵求慢車和快車的速度;

⑶求線段BC所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

⑷如果設(shè)慢車行駛的時(shí)間為x(h),快慢兩車到乙地的距離分別為y1(km)y2(km),請?jiān)谟覉D中畫出y1、y2x的函數(shù)圖像.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱這個(gè)分式為快樂分式”.如:,則 快樂分式

(1)下列式子中,屬于快樂分式的是 (填序號);

,② ,③ ,④ .

2)將快樂分式化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為: = .

3)應(yīng)用:先化簡 ,并求x取什么整數(shù)時(shí),該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某個(gè)圖形是按下面方法連接而成的:(0,0)→(2,0);(1,0)→(0,﹣1);(1,1)→(1,﹣2);(1,0)→(2,﹣1).

(1)請連接圖案,它是一個(gè)什么漢字?

(2)作出這個(gè)圖案關(guān)于y軸的軸對稱圖形,并寫出新圖案相應(yīng)各端點(diǎn)的坐標(biāo),你得到一個(gè)什么漢字?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列步驟是一位同學(xué)在解方程3時(shí)的解答過程:

方程兩邊都乘以x,得x1+23(第一步)

移項(xiàng),合并同類項(xiàng),得x2(第二步)

經(jīng)檢驗(yàn),x2是原方程的解(第三步)

所以原方程的解是:x2(第四步)

1)他的解答過程是從第   步開始出錯(cuò)的,出錯(cuò)原因是   ;

2)請寫出此題正確的解答過程.

查看答案和解析>>

同步練習(xí)冊答案