【題目】如圖,點,點,在函數(shù)的圖象上, 都是等腰直角三角形,斜邊都在軸上(是大于或等于2的正數(shù)數(shù)),則__________.(用含的式子表示)

【答案】

【解析】

過過點P1P1Ex軸于點E,過點P2P2Fx軸于點F,過點P3P3Gx軸于點G,,根據(jù)P1OA1,P2A1A2,P3A2A3都是等腰直角三角形,可求出A1,A2,A3的橫坐標,從而總結出一般規(guī)律得出點An的坐標,再求的值即可.

解:過點P1P1Ex軸于點E,過點P2P2Fx軸于點F,過點P3P3Gx軸于點G

P1OA1是等腰直角三角形,
P1E=OE=A1E,
設點P1的坐標為(a,a)(a>0),
將點P1(a,a)代入,可得a=3,
故點A1的坐標為(6,0),
設點P2的縱坐標為b,則P2的橫坐標為6+b,

將點(b+6,b)代入,可得b=,
故點A2的橫坐標為,
同理可以得到A3的橫坐標是,

An的橫坐標是,

根據(jù)等腰三角形的性質得到An的橫坐標的一半,

.

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的頂點都在坐標軸上,若AB∥CDAOBCOD面積分別為818,若雙曲線y恰好經(jīng)過BC的中點E,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB12,AD15,ECD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處,點P是線段CB延長線上的動點,連接PA,若△PAF是等腰三角形,則PB的長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“食品安全”受到全社會的廣泛關注,育才中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調查的學生共有________人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_________;

2)請補全條形統(tǒng)計圖;

3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為,現(xiàn)從中隨機抽取人參加食品安全知識競賽,則恰好抽到個男生和個女生的概率________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,點O是對角線AC的中點,過點OAC的垂線,分別交AD、BC于點E、F,連接AF、CE.試判斷四邊形AECF的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣3a≠0)與x軸交于點A﹣2,0)、B40)兩點,與y軸交于點C

1)求拋物線的解析式;

2)點PA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點QB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?

3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使SCBKSPBQ=52,求K點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清代《修武縣志》有勝果寺的記載,“康熙五十二年三月十七日,塔頂現(xiàn)青白二氣如云,越二日乃止”,此文中的塔即為“勝果寺塔”,是修武作為“千年古縣”的標志性古建筑.為了測量塔的高度,某校數(shù)學興趣小組的兩名同學采用了如下方式進行測量.如圖,小明站在處,眼睛距離地面的高度為,測得塔頂的仰角為,小紅站在距離小明處,眼睛距離地面的高度為,測得塔頂的仰角為,已知,,塔底在同一水平面上,由此即可求出塔高.你知道是怎么求的嗎?請寫出解題過程.(結果精確到.參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,為邊的中點.點從點出發(fā),以每秒個單位長度的速度沿運動到點停止,同時點從點出發(fā),以每秒個單位長度的速度沿折線運動到點停止,當點停止運動時,點也停止運動.當點不與的頂點重合時,過點的邊于點為邊作,設點的運動時間為()的面積為(平方單位)

1)當點與點重合時,求的值;

2)用含的代數(shù)式表示的長;

3)求之間的函數(shù)關系式;

4)連結直接寫出分成面積相等的兩部分時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,拋物線C1y1=x2-2mx+2m2-1,拋物線C2y2=x2-2nx+2n2-1

1)若m=2,過點A(0,7)作直線l垂直于y軸交拋物線C1于點B、C兩點.

①求BC的長;

②若拋物線C2與直線l交于點E、F兩點,若EF長大于BC的長,直接寫出n的范圍;

2)若m+n=k(k是常數(shù)),

①若,試說明拋物線C1與拋物線C2的交點始終在定直線上;

②求y1+y2的最小值(用含k的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案