【題目】如圖,矩形ABCD中,AB=12,AD=15,E是CD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處,點P是線段CB延長線上的動點,連接PA,若△PAF是等腰三角形,則PB的長為____.
科目:初中數(shù)學 來源: 題型:
【題目】某商品經銷店欲購進兩種紀念品,用160元購進的種紀念品與用240元購進的種紀念品的數(shù)量相同,每件種紀念品的進價比種紀念品的進價貴10元.
(1)求兩種紀念品每件的進價分別為多少元?
(2)若該商店種紀念品每件售價24元,種紀念品每件售價35元,這兩種紀念品共購進1000件,這兩種紀念品全部售出后總獲利不低于4900元,問種紀念品最多購進多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學中一種計量天體時空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側),BC=2,AB=2,△ADC與△ABC關于AC所在的直線對稱.
(1)當OB=2時,求點D的坐標;
(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;
(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:
(Ⅰ)圖①中的值為 ;
(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ) 根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質量為的約有多少只?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正方形中,點是對角線的中點,點是線段上(不與點,重合)的一個動點,過點作且交邊于點.
(1)求證:.
(2)如圖②,若正方形的邊長為,過點作于點,在點運動的過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由.
(3)用等式表示線段,,之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護區(qū)開展了尋找古樹活動.如圖,在一個坡度(或坡比)i=1:2.4的山坡AB上發(fā)現(xiàn)有一棵古樹CD.測得古樹底端C到山腳點A的距離AC=26米,在距山腳點A水平距離6米的點E處,測得古樹頂端D的仰角∠AED=48°(古樹CD與山坡AB的剖面、點E在同一平面上,古樹CD與直線AE垂直),則古樹CD的高度約為多少米?(參考數(shù)據(jù):sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DB EC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.
(3)拓展運用:如圖3,P是等腰直角三角形ABC內一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把具有一條公共邊的兩個三角形稱為“友鄰三角形”,兩個三角形的公共邊所對的頂點稱為“友鄰頂點”.
(1)如圖1,寫出圖中所有的“友鄰三角形”;
(2)如圖2,與相交于點,記的面積為,的面積為,求證:;
(3)從圖3中找出兩對“友鄰三角形”,探索是否存在(2)中類似的結論,并直接寫出結果;
(4)如圖4,,,若的面積為21,求的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com