【題目】某商品經(jīng)銷店欲購進(jìn)兩種紀(jì)念品,用160元購進(jìn)的種紀(jì)念品與用240元購進(jìn)的種紀(jì)念品的數(shù)量相同,每件種紀(jì)念品的進(jìn)價比種紀(jì)念品的進(jìn)價貴10元.
(1)求兩種紀(jì)念品每件的進(jìn)價分別為多少元?
(2)若該商店種紀(jì)念品每件售價24元,種紀(jì)念品每件售價35元,這兩種紀(jì)念品共購進(jìn)1000件,這兩種紀(jì)念品全部售出后總獲利不低于4900元,問種紀(jì)念品最多購進(jìn)多少件?
【答案】(1)紀(jì)念品每件進(jìn)價20元;紀(jì)念品每件進(jìn)價30元;(2)最多購進(jìn)紀(jì)念品100件.
【解析】
(1)設(shè)A種紀(jì)念品的進(jìn)價為x元,則B種紀(jì)念品的進(jìn)價為元,根據(jù)題意列出分式方程,然后解方程并檢驗(yàn)即可得出答案;
(2)設(shè)種紀(jì)念品最多購進(jìn)a件,根據(jù)“兩種紀(jì)念品全部售出后總獲利不低于4900元”列出不等式,解不等式即可.
(1)設(shè)A種紀(jì)念品的進(jìn)價為x元,則B種紀(jì)念品的進(jìn)價為元,根據(jù)題意有
解得,
經(jīng)檢驗(yàn),是原分式方程的解,
∴,
∴A種紀(jì)念品的進(jìn)價為20元,則B種紀(jì)念品的進(jìn)價為元;
(2)設(shè)A種紀(jì)念品最多購進(jìn)a件,根據(jù)題意有
解得 ,
∴A種紀(jì)念品最多購進(jìn)100件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,點(diǎn)E、F分別在線段BD、CD上,DE=DF=5.AE的延長線交邊BC于點(diǎn)G,AF交BD于點(diǎn)N、其延長線交BC的延長線于點(diǎn)H.
(1)求證:BG=CH;
(2)設(shè)AD=x,△ADN的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)聯(lián)結(jié)FG,當(dāng)△HFG與△ADN相似時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)檢票口有A、B、C、D共4個檢票通道.甲、乙兩人到該景區(qū)游玩,兩人分別從4個檢票通道中隨機(jī)選擇一個檢票.
(1)甲選擇A檢票通道的概率是 ;
(2)求甲乙兩人選擇的檢票通道恰好相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若拋物線與軸相交于,兩點(diǎn),與軸相交于點(diǎn),直線經(jīng)過點(diǎn),.
(1)求拋物線的解析式;
(2)點(diǎn)是直線下方拋物線上一動點(diǎn),過點(diǎn)作軸于點(diǎn),交于點(diǎn),連接.
①線段是否有最大值?如果有,求出最大值;如果沒有,請說明理由;
②在點(diǎn)運(yùn)動的過程中,是否存在點(diǎn),恰好使是以為腰的等腰三角形?如果存在,請直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊(duì)同時開始維修某一段路面,一段時間后,甲隊(duì)被調(diào)往別處,乙隊(duì)獨(dú)自完成了剩余的維修任務(wù).已知乙隊(duì)每小時維修路面的長度保持不變,甲隊(duì)每小時維修路面30米.甲、乙兩隊(duì)在此路段維修路面的總長度(米)與維修時間(時)之間的函數(shù)圖象如圖所示,下列說法中:
(1)甲隊(duì)調(diào)離時,甲、乙兩隊(duì)已維修路面的總長度為150米;
(2)乙隊(duì)每小時比甲隊(duì)多維修20米;
(3)乙一共工作2小時;
(4).
正確的有( 。﹤.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店3月份購進(jìn)甲種水果50千克、乙種水果80千克,共花費(fèi)1700元,其中甲種水果以15元/千克,乙種水果以20元/千克全部售出;4月份又以同樣的價格購進(jìn)甲種水果60千克、乙種水果40千克,共花費(fèi)1200元,由于市場不景氣,4月份兩種水果均以3月份售價的8折全部售出.
(1)求甲、乙兩種水果的進(jìn)價每千克分別是多少元?
(2)請計(jì)算該水果店3月和4月甲、乙兩種水果總贏利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,AD=15,E是CD上的點(diǎn),將△ADE沿折痕AE折疊,使點(diǎn)D落在BC邊上點(diǎn)F處,點(diǎn)P是線段CB延長線上的動點(diǎn),連接PA,若△PAF是等腰三角形,則PB的長為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com