【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時(shí),甲車到達(dá)B地后立即調(diào)頭,并保持原速度與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過(guò)一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(干米),甲車行駛的時(shí)間為x小時(shí),y與x之間的函數(shù)圖象如圖所示,則當(dāng)甲車重返A地時(shí),乙車距離C地________千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著技術(shù)的發(fā)展進(jìn)步,某公司2018年采用的新型原料生產(chǎn)產(chǎn)品.這種新型原料的用量y(噸)與月份x之間的關(guān)系如圖1所示,每噸新型原料所生產(chǎn)的產(chǎn)品的售價(jià)z(萬(wàn)元)與月份x之間的關(guān)系如圖2所示.已知將每噸這種新型原料加工成的產(chǎn)品的成本為20萬(wàn)元.
(1)求出該公司這種新型原料的用量y(噸)與月份x之間的函數(shù)關(guān)系式;
(2)若該公司利用新型原料所生產(chǎn)的產(chǎn)品當(dāng)月都全部銷售,求哪個(gè)月利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“七巧板”是我們祖先的一項(xiàng)卓越創(chuàng)造,可以拼出許多有趣的圖形,被譽(yù)為“東方魔板”,圖①是由邊長(zhǎng)的正方形薄板分成7塊制作成的“七巧板”圖②是用該“七巧板”拼成的一個(gè)“家”的圖形,該“七巧板”中7塊圖形之一的正方形邊長(zhǎng)為_______(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC為銳角,點(diǎn)M為射線AB上一動(dòng)點(diǎn),連接CM,以點(diǎn)C為直角頂點(diǎn),以CM為直角邊在CM右側(cè)作等腰直角三角形CMN,連接NB.
(1)如圖1,圖2,若△ABC為等腰直角三角形,
問(wèn)題初現(xiàn):①當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),則線段BN,AM之間的位置關(guān)系是 ,數(shù)量關(guān)系是 ;
深入探究:②當(dāng)點(diǎn)M在線段AB的延長(zhǎng)線上時(shí),判斷線段BN,AM之間的位置關(guān)系和數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖3,∠ACB≠90°,若當(dāng)點(diǎn)M為線段AB上不與點(diǎn)A重合的一個(gè)動(dòng)點(diǎn),MP⊥CM交線段BN于點(diǎn)P,且∠CBA=45°,BC=,當(dāng)BM= 時(shí),BP的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠ACD=90°,AC=DC,MN是過(guò)點(diǎn)A的直線,DB⊥MN于點(diǎn)B.
(1)如圖,求證:BD+AB=BC;
(2)直線MN繞點(diǎn)A旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)∠BCD=30°,BD=時(shí),求BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,CG⊥AB于點(diǎn)G,∠ABF=45°,F在CD上,BF交CG于點(diǎn)E,連接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的長(zhǎng)度;
(2)求證:CE+BE=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小蕓設(shè)計(jì)的“過(guò)圓外一點(diǎn)作已知圓的切線”的尺規(guī)作圖過(guò)程.
已知:⊙O 及⊙O 外一點(diǎn) P.
求作:⊙O 的一條切線,使這條切線經(jīng)過(guò)點(diǎn) P.
作法:①連接 OP,作 OP 的垂直平分線 l,交 OP 于點(diǎn) A;
②以 A 為圓心,AO 為半徑作圓,交⊙O 于點(diǎn) M;
③作直線 PM,則直線 PM 即為⊙O 的切線.
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:連接 OM,
由作圖可知,A 為 OP 中點(diǎn),
∴OP 為⊙A 直徑,
∴∠ =90°( )(填推理的依據(jù))
即 OM⊥PM.
又∵點(diǎn) M 在⊙O 上,
∴PM 是⊙O 的切線.( )(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
問(wèn)題情境
在綜合與實(shí)踐課上,同學(xué)們以“三角形的折疊”為主題開(kāi)展數(shù)學(xué)活動(dòng).
操作發(fā)現(xiàn)
“楊輝”小組的同學(xué)用一張鈍角三角形紙片,為鈍角,進(jìn)行了如下操作:
第一步:如圖1,折出的角平分線;
第二步:如圖2,展平紙片,再次折疊該三角形紙片,使預(yù)點(diǎn)與點(diǎn)重合,拆痕分別與,交于點(diǎn),;
第三步:如圖3,再次展平紙片,連接,,可得四邊形.
(1)在圖4的中利用尺規(guī)作出折痕,;
(要求:保留作圖痕跡,不寫(xiě)作法)
實(shí)踐探究
(2)試判斷圖3中四邊形的形狀,并寫(xiě)出證明過(guò)程;
深入探究
(3)“陳景潤(rùn)”小組的同學(xué)突發(fā)奇想,在“楊輝”小組同學(xué)操作的基礎(chǔ)上設(shè)計(jì)了這樣一個(gè)問(wèn)題:在圖3中,連接,分別交于點(diǎn),交于點(diǎn),若,,利用相似三角形的知識(shí)可以求出的長(zhǎng).請(qǐng)你寫(xiě)出求解過(guò)程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com