【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點,△ABE沿著BE折疊,使點A的對應點F恰好落在邊CD上,連接EF,BF,給出下列結論:
①若∠A=70°,則∠ABE=35°;②若點F是CD的中點,則S△ABES菱形ABCD
下列判斷正確的是( 。
A. ①,②都對B. ①,②都錯C. ①對,②錯D. ①錯,②對
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點,P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q.
(1)這條拋物線的對稱軸是 , 直線PQ與x軸所夾銳角的度數(shù)是;
(2)若兩個三角形面積滿足S△POQ= S△PAQ , 求m的值;
(3)當點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=4cm,BE=5cm,點E是AD邊上的一點,AE、DE分別長acm.bcm,滿足(a-3)2+|2a+b-9|=0.動點P從B點出發(fā),以2cm/s的速度沿B→C→D運動,最終到達點D,設運動時間為t s.
(1)a=______cm,b=______cm;
(2)t為何值時,EP把四邊形BCDE的周長平分?
(3)另有一點Q從點E出發(fā),按照E→D→C的路徑運動,且速度為1cm/s,若P、Q兩點同時出發(fā),當其中一點到達終點時,另一點隨之停止運動.求t為何值時,△BPQ的面積等于6cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把代數(shù)式通過配湊等手段,得到局部完全平方式,再進行有關運算和解題,這種解題方法叫做配方法,例如:
①用配方法分解因式:.
解:原式
②,利用配方法求的最小值.
解:
∵,
∴當時,有最小值1.
請根據(jù)上述材料解決下列問題:
(1)在橫線上添加一個常數(shù),使之成為完全平方式:________.
(2)用配方法因式分解:.
(3)若,求的最小值.
(4)已知,則的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周,堅勝家電城大力促銷,收銀情況一直看好下表為當天與前一天的營業(yè)額的漲跌情況已知9月30日的營業(yè)額為26萬元.
10月1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
4 | 3 | 2 | 0 |
|
|
|
黃金周內收入最低的哪一天?直接回答,不必寫過程.
黃金周內平均每天的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c經過坐標原點,并與x軸交于點A(2,0).
(1)求此拋物線的解析式;
(2)寫出頂點坐標及對稱軸;
(3)若拋物線上有一點B,且S△OAB=3,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為選拔參加八年級數(shù)學“拓展性課程”活動人選,數(shù)學李老師對本班甲、乙兩名學生以前經歷的10次測驗成績(分)進行了整理、分析(見圖①):
(1)寫出a,b的值;
(2)如要推選1名學生參加,你推薦誰?請說明你推薦的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知 為正方形 的中心,分別延長 到點 , 到點 ,使 , ,連結 ,將△ 繞點 逆時針旋轉 角得到△ (如圖2).連結 、 .
(Ⅰ)探究 與 的數(shù)量關系,并給予證明;
(Ⅱ)當 , 時,求:
① 的度數(shù);
② 的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:對于二次三項式 ,能直接用公式法進行因式分解,得到 ,但對于二次三項式 ,就不能直接用公式法了.我們可以采用這樣的方法:在二次三項式 中先加上一項 ,使其成為完全平方式,再減去 這項,使整個式子的值不變,于是:
像這樣把二次三項式分解因式的方法叫做添(拆)項法.
問題解決:請用上述方法將二次三項式 分解因式.
(2)拓展應用:二次三項式 有最小值或有最大值嗎?如果有,請你求出來并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com