如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動到點(diǎn)C時(shí)停止,它們運(yùn)動的速度都是1cm/秒.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分).則下列結(jié)論錯誤的是( 。
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.當(dāng)0<t≤5時(shí),y=
2
5
t2
D.當(dāng)t=
29
4
秒時(shí),△ABE△QBP

根據(jù)圖(2)可得,當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,
∵點(diǎn)P、Q的運(yùn)動的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故A選項(xiàng)正確;

又∵從M到N的變化是2,
∴ED=2,
∴AE=AD-ED=5-2=3,
在Rt△ABE中,AB=
BE2-AE2
=
52-32
=4,
∴cos∠ABE=
AB
BE
=
4
5
,故B選項(xiàng)錯誤;

如圖(1)過點(diǎn)P作PF⊥BC于點(diǎn)F,
∵ADBC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5
,
∴PF=PBsin∠PBF=
4
5
t,
∴當(dāng)0<t≤5時(shí),y=
1
2
BQ•PF=
1
2
t•
4
5
t=
2
5
t2,故C選項(xiàng)正確;

當(dāng)t=
29
4
秒時(shí),點(diǎn)P在CD上,此時(shí),PD=
29
4
-BE-ED=
29
4
-5-2=
1
4
,
PQ=CD-PD=4-
1
4
=
15
4
,
AB
AE
=
4
3
,
BQ
PQ
=
4
3

AB
AE
=
BQ
PQ
,
又∵∠A=∠Q=90°,
∴△ABE△QBP,故D選項(xiàng)正確.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2-2x-m(m>0)與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn)C1
(1)求拋物線的對稱軸及點(diǎn)C、C1的坐標(biāo)(可用含m的代數(shù)式表示);
(2)如果點(diǎn)Q在拋物線的對稱軸上,點(diǎn)P在拋物線上,以點(diǎn)C、C1、P、Q為頂點(diǎn)的四邊形是平行四邊形,求所有平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),已知點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B、C在y軸上,BC=8,AB=AC,直線AB與x軸相交于點(diǎn)D.
(1)求點(diǎn)C、D的坐標(biāo);
(2)求圖象經(jīng)過A、C、D三點(diǎn)的二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

施工隊(duì)要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點(diǎn),(x1x2)且(x1+1)(x2+1)=5
(1)試確定m的值;
(2)過點(diǎn)A(-1,-5)和拋物線的頂點(diǎn)M的直線交x軸于點(diǎn)B,求B點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P(a,b)是拋物線上點(diǎn)C到點(diǎn)M之間的一個動點(diǎn)(含C、M點(diǎn)),△POQ是以PO為腰、底邊OQ在x軸上的等腰三角形,過點(diǎn)Q作x軸的垂線交直線AM于點(diǎn)R,連接PR.設(shè)△PQR的面積為S,求S與a之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(3,0),(-2,5).
(1)求這個二次函數(shù)的解析式.
(2)求出此二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)及其與y軸的交點(diǎn)坐標(biāo).
(3)畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
4
x2+1,直線y=kx+b經(jīng)過點(diǎn)B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點(diǎn)B旋轉(zhuǎn)到與x軸平行的位置時(shí)(如圖1),直線與拋物線y=
1
4
x2+1相交,其中一個交點(diǎn)為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點(diǎn)B旋轉(zhuǎn),與拋物線相交,其中一個交點(diǎn)為P'(如圖②),過點(diǎn)P'作x軸的垂線P'M,點(diǎn)M為垂足.是否存在這樣的點(diǎn)P',使△P'BM為等邊三角形?若存在,請求出點(diǎn)P'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,拋物線y=x2-2ax+b2交x軸于兩點(diǎn)M,N,交y軸于點(diǎn)P,其中M的坐標(biāo)是(a+c,0).
(1)求證:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判斷△ABC的三邊長能否取一組適當(dāng)?shù)闹担谷切蜯ND(D為拋物線的頂點(diǎn))是等腰直角三角形?如能,請求出這組值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)某種產(chǎn)品,每件產(chǎn)品成本是3元,售價(jià)是4元,年銷售量為10萬件.為了獲得更好的效益,公司準(zhǔn)備那出一定的資金做廣告.根據(jù)經(jīng)驗(yàn),每年投入廣告費(fèi)為x(萬元)時(shí),產(chǎn)品的年銷售量將是原銷售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利潤看作是銷售額減去成本費(fèi)和廣告費(fèi),試求當(dāng)年利潤為16萬元時(shí),廣告費(fèi)x為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案