分析 (1)根據(jù)二次函數(shù)對(duì)稱性可求出點(diǎn)A(1,0)關(guān)于對(duì)稱軸直線x=2的對(duì)稱點(diǎn)為(3,0),然后把(1,0),(3,0)代入y=ax2+bx+6即可求出答案.
(2)設(shè)P(t,0),根據(jù)題意,PA=PA′=|t-1|,M′的縱坐標(biāo)為2,由四邊形AM′A′M的面積=4×$\frac{1}{2}$×|t-1|×2=16,即可求得.
解答 解:(1)∵拋物線y=ax2+bx+6的對(duì)稱軸為x=2,
∴根據(jù)二次函數(shù)的對(duì)稱性得:點(diǎn)A(1,0)的對(duì)稱點(diǎn)為(3,0),
把兩點(diǎn)代入得$\left\{\begin{array}{l}{a+b+6=0}\\{9a+3b+6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=2}\\{b=-8}\end{array}\right.$
∴拋物線的解析式為y=2x2-8x+6,
∵y=2x2-8x+6=2(x-2)2-2,
∴頂點(diǎn)M的坐標(biāo)為(2,-2).
(2)設(shè)P(t,0),
根據(jù)題意,PA=PA′=|t-1|,M′的縱坐標(biāo)為2,
∵四邊形AM′A′M的面積為16,
∴4×$\frac{1}{2}$×|t-1|×2=16,
解得t=5或-3,
∴點(diǎn)P的坐標(biāo)為(5,0)或(-3,0).
點(diǎn)評(píng) 本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)圖象與幾何變換,求出點(diǎn)A關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)和熟練掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{a}$ | B. | $\sqrt{\frac{1}{{a}^{2}}}$ | C. | $\sqrt{{a}^{2}}$ | D. | $\sqrt{-{a}^{2}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com