【題目】王老師給同學們出了一道化簡的題目:2(2x2y+x)﹣3(x2y﹣2x),小亮同學的做法如下:2(2x2y+x)﹣3(x2y﹣2x)=4x2y+x﹣3x2y﹣2x=x2y﹣x.請你指出小亮的做法正確嗎?如果不正確,請指出錯在哪?并將正確的化簡過程寫下來.
科目:初中數學 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點A和B.
(1)直接寫出坐標:點A ,點B ;
(2)以線段AB為一邊在第一象限內作□ABCD,其頂點D(, )在雙曲線 (>)上.
①求證:四邊形ABCD是正方形;
②試探索:將正方形ABCD沿軸向左平移多少個單位長度時,點C恰好落在雙曲線 (>)上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),則根據勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如圖(2)和(3),請你類比勾股定理,試猜想a2+b2與c2的關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B,∠D的關系,說出理由.
解:猜想∠BPD+∠B+∠D=360°
理由:過點P作EF∥AB,
∴∠B+∠BPE=180°(兩直線平行,同旁內角互補)
∵AB∥CD,EF∥AB,
∴EF∥CD,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.)
∴∠EPD+∠D=180°(兩直線平行,同旁內角互補)
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(1)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關系,并說明理由.
(2)觀察圖(3)和(4),已知AB∥CD,猜想圖中的∠BPD與∠B,∠D的關系,不需要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據下列條件,只能畫出唯一的△ABC的是( 。
A. AB=3 BC=4 B. AB=4 BC=3 ∠A=30°
C. ∠A=60°∠B=45° AB=4 D. ∠C=60°AB=5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 下列長度的三條線段,能組成三角形的是( )
A.3cm,5cm,7cmB.7cm,7cm,14cmC.4cm,5cm,9cmD.2cm,1cm,3cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)36×( ﹣ + )
(2) +(﹣1)2007+ ﹣|﹣5|
(3)﹣14+3×(﹣2)4﹣32
(4)﹣ ×[﹣32×(﹣ )2﹣ ].
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com