【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的△ABC.
(1)試根據(jù)三角形三邊關(guān)系,判斷△ABC的形狀;
(2)在方格紙中利用直尺分別畫出AB、BC的垂直平分線,交點為O.觀察點O的位置,你能得出怎樣的結(jié)論?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點C,連接AC,求tan∠TAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:函數(shù)y=(a、b、k是常數(shù),k≠ab)叫奇特函數(shù).當(dāng)a=b=0時,奇特函數(shù)y=就是反比例函數(shù)y=(k是常數(shù),k≠0).
(1)如果某一矩形兩邊長分別是2和3,當(dāng)它們分別增加x和y后,得到新矩形的面積為8.求y與x之間的函數(shù)表達(dá)式,并判斷它是否為奇特函數(shù);
(2)如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點A、C坐標(biāo)分別為(6,0)、(0,3),點D是OA中點,連接OB、CD交于E,若奇特函數(shù)y=的圖象經(jīng)過點B、E,求該奇特函數(shù)的表達(dá)式;
(3)把反比例函數(shù)y=的圖象向右平移4個單位,再向上平移 個單位就可得到(2)中得到的奇特函數(shù)的圖象;
(4)在(2)的條件下,過線段BE中點M的一條直線l與這個奇特函數(shù)圖象交于P,Q兩點(P在Q右側(cè)),如果以B、E、P、Q為頂點組成的四邊形面積為16,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=12cm,延長AB到點C,使BC=AB,點D是BC中點,點E是AD中點.
(1)根據(jù)題意,補全圖形;
(2)求DE的長;
(3)若動點P從點A出發(fā),以1cm/s的速度向點C運動,到達(dá)點C停止運動,點Q從點C出發(fā),以2cm/s的速度向點A運動,到達(dá)點A停止運動,若運動時間為ts,當(dāng)t為何值時,PQ=3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個口袋里有四個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,小明和小強采取的摸取方法分別是:
小明:隨機摸取一個小球記下標(biāo)號,然后放回,再隨機摸取一個小球,記下標(biāo)號;
小強:隨機摸取一個小球記下標(biāo)號,不放回,再隨機摸取一個小球,記下標(biāo)號.
(1)用畫樹狀圖(或列表法)分別表示小明和小強摸球的所有可能出現(xiàn)的結(jié)果;
(2)分別求出小明和小強兩次摸球的標(biāo)號之和等于5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面圖形上的任意兩點P,Q,如果經(jīng)過某種變換得到新圖形上的對應(yīng)點P′,Q′,保持PQ=P′Q′,我們把這種變換稱為“等距變換”,下列變換中不一定是等距變換的是( )
A.平移 B.旋轉(zhuǎn) C.軸對稱 D.位似
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com