【題目】已知在平面直角坐標(biāo)xOy中,正比例函數(shù)y=﹣4x的圖象經(jīng)過點A(﹣3,m),點Bx軸的負(fù)半軸上,過點A作直線ACx軸,交∠AOB的平分線OC于點C,那么點C到直線OA的距離等于_____

【答案】12.

【解析】

過點CCDx軸于點D,利用正比例函數(shù)圖象上點的坐標(biāo)特征可求出m值,根據(jù)角平分線的性質(zhì)可得出點C到直線OA的距離等于線段CD的長度,再根據(jù)平行線的性質(zhì)結(jié)合點A的坐標(biāo)即可求出CD的長度,此題得解.

過點CCDx軸于點D,如圖所示,

∵正比例函數(shù)y=﹣4x的圖象經(jīng)過點A(﹣3,m),

m=﹣4×(﹣3)=12.

OC平分∠AOB,

∴點C到直線OA的距離等于線段CD的長度.

ACx軸,CDx軸,點A的坐標(biāo)為(﹣3,12),

CD=12.

故答案為:12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A在數(shù)軸上對應(yīng)的數(shù)為B對應(yīng)的數(shù)為滿足

(1)線段AB的長為________

(2)C在數(shù)軸上對應(yīng)的數(shù)為10,在數(shù)軸上是否存在點D,使得DA+DB=DC?若存在,求出點D對應(yīng)的數(shù);若不存在,說明理由。

(3)動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左均速運動;動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左移動;動點M從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左均速移動,P、Q、M同時出發(fā),設(shè)運動時間為,當(dāng),探究QPQA、QM三條線段之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在商場購買甲、乙兩種不同的運動器材,購買甲種器材花費1 500元,購買乙種器材花費1 000元,購買甲種器材數(shù)量是購買乙種器材數(shù)量的2倍,且購買一件乙種器材比購買一件甲種器材多花10元.

(1)求購買一件甲種器材、一件乙種器材各需多少元?

(2)該中學(xué)決定再次購買甲、乙兩種運動器材共50件,恰逢該商場對兩種運動器材的售價進(jìn)行調(diào)整,甲種器材售價比第一次購買時提高了10%,乙種器材售價比第一次購買時降低了10%,如果此次購買甲、乙兩種器材的總費用不超過1 700元,那么這所學(xué)校最多可購買多少件乙種器材?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

如圖,點E在直線DF上,點B在直線AC上,若∠AGB=EHF,C=D.

求證:∠A=F.

證明:∵∠AGB=EHF

AGB=___________(對頂角相等)

∴∠EHF=DGF

DBEC____________________________________

∴∠_________=DBA________________________________

又∵∠C=D

∴∠DBA=D

DF_________________________________________

∴∠A=F__________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOD=150°,OB、OC、OM、ON 是∠AOD 內(nèi)的射線,若∠BOC=20°,∠AOB=10°,OM 平分∠AOC,ON 平分∠BOD,當(dāng)∠BOC 在∠AOD 內(nèi)繞著點 O以 3°/秒的速度逆時針旋轉(zhuǎn) t 秒時,當(dāng)∠AOM:∠DON=3:4 時,則 t=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的兩個銳角頂點A,B在函數(shù)y= (x>0)的圖象上,AC//x軸,AC=2.若點A的坐標(biāo)為(2,2),則點B的坐標(biāo)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BCD點,E、F分別為DB、DC的中點,則圖中共有全等三角形 對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育文化用品商店購進(jìn)籃球和排球共30個,進(jìn)價和售價如下表,若全部銷售完后共可獲利潤1680元.

籃球

排球

進(jìn)價(元/

150

120

售價(元/

200

180

(1)請利用二元一次方程組求購進(jìn)籃球和排球各多少個?

(2)“雙11”快到了,這個體育文化用品商店也準(zhǔn)備搞促銷活動,計劃籃球9折銷售,排球8折銷售,則銷售8個籃球的利潤與銷售幾個排球的利潤相等?

查看答案和解析>>

同步練習(xí)冊答案