【題目】從6 月30日起,某縣普降特大暴雨,遭受了短期降水量最大、內(nèi)河水位歷史最高、防汛壓力最重的百年不遇的災害.洪水無情人有情,該縣實驗學校9 (1)班計劃用捐款從商店購買同品牌的雨衣和雨傘送往抗洪前線.已知購買一件雨衣比購買一把雨傘多用元,若用元購買雨衣和用元購買雨傘,則購買雨衣的件數(shù)是購買雨傘把數(shù)的一半.
(1)求購買該品牌的一件雨衣、一把雨傘各需要多少元.
(2)經(jīng)商談,商店給予該班級購買一件該品牌的雨衣贈送把該品牌的雨傘的優(yōu)惠, 如果該班需要購買雨傘個數(shù)是雨衣件數(shù)的倍還多個,且該班購買雨衣和雨傘的總費用不超過元,那么該班最多可以購買多少件該品牌的雨衣?
【答案】(1)購買該一件雨衣需要元,購買一把雨傘需要元;(2)最多可以購買件該品牌的雨衣
【解析】
(1)設(shè)購買該品牌一把雨傘需要x元,則購買一件雨衣需要(x+30)元.則根據(jù)等量關(guān)系:購買雨衣的件數(shù)是購買雨傘把數(shù)的一半,列出方程;
(2)設(shè)公司購買雨衣的件數(shù)為a,則還需要購買雨傘的個數(shù)是(2a+6-a)個,則根據(jù)“購買雨衣和雨傘的總費用不超過元”列出不等式.
解:設(shè)購買一把雨傘需要x元, 則購買件雨衣需要元, 根據(jù)題意,
解得.
經(jīng)檢驗,是原方程的解,
.
答:購買該一件雨衣需要元,購買一把雨傘需要元
設(shè)該班購買雨衣的件數(shù)為a個,則還需購買雨傘的把數(shù)為個,由題意得
.
解得.
答:最多可以購買件該品牌的雨衣.
科目:初中數(shù)學 來源: 題型:
【題目】在一次夏令營活動中,小明同學從營地出發(fā),要到地的北偏東方向的處,他先沿正東方向走到地,再沿北偏東方向走,恰能到達目的地,已知,兩地相距,由此可知,,兩地相距________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
(1)在圖l中畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)在圖2中,以點O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應邊的比為2:1(畫出一種即可). 直接寫出點A的對應點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個根為 -1,求的值和方程的另一個根;
(2)求證:不論取何值,該方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知△ABC中,CA=CB,CD⊥AB于D點,點M為線段AC上一動點,線段MN交DC于點N,且∠BAC=2∠CMN,過點C作CE⊥MN交MN延長線于點E,交線段AB于點F,探索的值.
(1)若∠ACB=90°,點M與點A重合(如圖1)時:①線段CE與EF之間的數(shù)量關(guān)系是 ;②= ;
(2)在(1)的條件下,若點M不與點A重合(如圖2),請猜想寫出的值,并證明你的猜想
(3)若∠ACB≠90°,∠CAB=,其他條件不變,請直接寫出的值(用含有的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,于,平分,且于,與相交于點,是邊的中點,連接與相交于點,下列結(jié)論正確的有( )個
①;②;③;④是等腰三角形;⑤.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l1:y=﹣2x+6與坐標軸交于A,B兩點,直線l2:y=kx+2(k>0)與坐標軸交于點C,D,直線l1,l2與相交于點E.
(1)當k=2時,求兩條直線與x軸圍成的△BDE的面積;
(2)點P(a,b)在直線l2:y=kx+2(k>0)上,且點P在第二象限.當四邊形OBEC的面積為時.
①求k的值;
②若m=a+b,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com