【題目】如圖,在三角形ABC中,∠A=90°,AB=AC=2,將△ABC折疊,使點B落在邊AC上點D (不與點A重合)處,折痕為PQ,當(dāng)重疊部分△PQD為等腰三角形時,則AD的長為_____.
【答案】2或2﹣2.
【解析】
分①PD=DQ;②DQ=PQ;③PD=PQ三種情況結(jié)合已知條件分析解答即可.
若△PDQ為等腰三角形,則存在以下三種情況:
(1)當(dāng)PD=DQ時,
由折疊的性質(zhì)可知,PD=PB,DQ=BQ,
∴PD=PB=BQ=DQ,
∴四邊形BQDP是菱形,
∴PD∥BC,BP∥DQ,
∵∠A=90°,AB=AC,
∴△ABC是等腰直角三角形,
∴△APD和△CDQ都是等腰直角三角形,
設(shè)AD=x,則AP=x,PD=PB=2-x,
在Rt△APD中,由勾股定理可得:,
解得:(不合題意,舍去),
∴此時AD=;
(2)DQ=PQ時,
由折疊的性質(zhì)可知:BQ=DQ=PQ,
又∵在△ABC中,∠B=45°,
∴∠BPQ=∠B=45°,
∴∠PQB=90°,
∴PQ⊥BC,
∵將點B沿PQ折疊后點B落在AC上,
∴點B與點C重合,
∴x=AD=AC=2;
(3)當(dāng)PD=PQ時,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=8,BC=6.CD⊥AB于點D.點P從點A出發(fā),以每秒1個單位長度的速度沿線段AB向終點B運動.在運動過程中,以點P為頂點作長為2,寬為1的矩形PQMN,其中PQ=2,PN=1,點Q在點P的左側(cè),MN在PQ的下分,且PQ總保持與AC垂直.設(shè)P的運動時間為t(秒)(t>0),矩形PQMN與△ACD的重疊部分圖形面積為S(平方單位).
(1)求線段CD的長;
(2)當(dāng)矩形PQMN與線段CD有公共點時,求t的取值范圍;
(3)當(dāng)點P在線段AD上運動時,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料:思考的同學(xué)小斌在解決連比等式問題:“已知正數(shù),,滿足,求的值”時,采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進而得出,,之間的關(guān)系,從而解決問題.過程如下:
解;設(shè),則有:
,,,
將以上三個等式相加,得.
,,都為正數(shù),
,即,.
.
仔細閱讀上述材料,解決下面的問題:
(1)若正數(shù),,滿足,求的值;
(2)已知,,,互不相等,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某市2018年企業(yè)用水量x(噸)與該月應(yīng)交的水費y(元)之間的函數(shù)關(guān)系如圖.
(1)當(dāng)x≥50時,求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2018年10月份的水費為620元,求該企業(yè)2018年10月份的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=1,M,N分別是AD,BC邊的中點,沿BQ將△BCQ折疊,若點C恰好落在MN上的點P處,則PQ的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年12月,乙型,甲型H3N2和甲型H1N1三種禽流感病毒共同發(fā)威,造成流感在某市迅速蔓延,下面是該市確診流感患者的統(tǒng)計圖:
(1)在12月18日,該市被確診的流感患者中多少乙型流感患者?
(2)在12月17日至21日這5天中,該市平均每天新增流感確診病例多少人?如果接下來的5天中繼續(xù)按這個平均數(shù)增加,那么到12月26日,該市流感累計確診病例將會達到多少人?
(3)某地因1人患了流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了流感,每天傳染中平均一個人傳染了幾個人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象在第一象限的交點為P,PA⊥x軸于點A,PB⊥y軸于點B,函數(shù)y=kx+2的圖象分別交x軸,y軸于點C,D,已知△OCD的面積S△OCD=1,=
(1)求點D的坐標(biāo);
(2)求k,m的值;
(3)寫出當(dāng)x>0時,使一次函數(shù)y=kx+2的值大于反比例函數(shù)y=的值x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A1,A2,…,An均在直線y=x-1上,點B1,B2,…,Bn均在雙曲線y=-上,并且滿足A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點An的橫坐標(biāo)為an(n為正整數(shù)).若a1=-1,則a2018=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上,點O為原點,點A表示的數(shù)為10,動點B、C在數(shù)軸上移動,且總保持BC=3(點C在點B右側(cè)),設(shè)點B表示的數(shù)為m.
(1)如圖1,若B為OA中點,則AC= ,點C表示的數(shù)是 ;
(2)若B、C都在線段OA上,且AC=2OB,求此時m的值;
(3)當(dāng)線段BC沿射線AO方向移動時,若存在AC﹣OB=AB,求滿足條件的m值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com