【題目】如圖①是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀將其平均分成四塊小長方形,然后用四塊小長方形拼成一個回形正方形(如圖②)

自主探索:

1)仔細(xì)觀察圖形,完成下列問題

①圖②中的陰影部分的面積為_____;

②觀察圖②,請你寫出(a+b2、(a-b2ab之間的等量關(guān)系是_____;

知識運(yùn)用:

2)若x-y=5,xy=,根據(jù)(1)中的結(jié)論,求(x+y2的值;

知識延伸

3)根據(jù)你探索發(fā)現(xiàn)的結(jié)論,完成下列問題:

設(shè)A=,B=x+2y-3

計算(A-B2-A+B2的結(jié)果.

【答案】1)①陰影部分的面積為(b-a2,②(a+b2=b-a2+4ab;(236;(34y2-x2+6x-9

【解析】

1)①陰影部分面積直接利用邊長乘邊長即可 ②利用正方形面積等于空白部分面積加上陰影部分面積即可 (2)(x+y2=x-y2+4xy代入求值即可 3)(A-B2-A+B2= A2-2AB+B2-A2-2AB-B2=-4AB,代入A、B計算即可

1)①圖②中的陰影部分的面積為(b-a2

②由圖2知,(a+b2、(a-b2ab之間的等量關(guān)系是(a+b2=b-a2+4ab,即(a+b2=a-b2+4ab

故答案為:(b-a2、(a+b2=b-a2+4ab;

2)(x+y2=x-y2+4xy

=52+4×

=25+11

=36;

3)當(dāng)A=,B=x+2y-3時,

原式=A2-2AB+B2-A2-2AB-B2

=-4AB

=-4××x+2y-3

=-x-2y-3)(x+2y-3

=-[x-32-4y2]

=-x2-6x+9-4y2

=4y2-x2+6x-9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20,每件盈利40.為了擴(kuò)大銷售,增加盈利,盡量減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價5,商場平均每天可多售出10.:

(1)若商場每件襯衫降價4,則商場每天可盈利多少元?

(2)若商場平均每天要盈利1200,每件襯衫應(yīng)降價多少元?

(3)要使商場平均每天盈利1600,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,C、D是半圓上的兩點(diǎn),且∠BAC=20°,.請連結(jié)線段CB,求四邊形ABCD各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為16cm2,AEF為等腰直角三角形,∠E=90°,AEBC交于點(diǎn)G,AFCD交于點(diǎn)H,則CGH的周長( 。

A. 4cmB. 6cmC. 8cmD. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列語句描述正確的是( 。

①若∠1=3,則ABDC;②若∠C+1+4=180°,則ADBC;③∠A=C,∠ABC=ADC,則ABDC;④若∠2=4,BD平分∠ABC,則BC=CD;⑤若ADBC,∠A=C,則ABDC

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于MN 兩點(diǎn),△OMN的面積為10.若動點(diǎn)Px軸上,則PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB垂直軸于點(diǎn)B,且SABO=.

1)求兩個函數(shù)的表達(dá)式;

2)求直線與雙曲線的交點(diǎn)坐標(biāo)和AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)OAC邊上的一個動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.

(1)判斷OEOF的大小關(guān)系?并說明理由?

(2)當(dāng)點(diǎn)O運(yùn)動何處時,四邊形AECF是矩形?并說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BAD、ABC的平分線AF、BG分別與線段CD交于點(diǎn)F、G,

AF與BG交于點(diǎn)E.

(1)求證:AFBG,DF=CG;

(2)若AB=10,AD=6,AF=8,求FG和BG的長度.

查看答案和解析>>

同步練習(xí)冊答案