【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.
(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?
(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.
【答案】
(1)解:設每臺大型收割機1小時收割小麥x公頃,每臺小型收割機1小時收割小麥y公頃,
根據(jù)題意得: ,
解得: .
答:每臺大型收割機1小時收割小麥0.5公頃,每臺小型收割機1小時收割小麥0.3公頃.
(2)解:設大型收割機有m臺,總費用為w元,則小型收割機有(10﹣m)臺,
根據(jù)題意得:w=300×2m+200×2(10﹣m)=200m+4000.
∵2小時完成8公頃小麥的收割任務,且總費用不超過5400元,
∴ ,
解得:5≤m≤7,
∴有三種不同方案.
∵w=200m+4000中,200>0,
∴w值隨m值的增大而增大,
∴當m=5時,總費用取最小值,最小值為5000元.
答:有三種方案,當大型收割機和小型收割機各5臺時,總費用最低,最低費用為5000元.
【解析】(1)設每臺大型收割機1小時收割小麥x公頃,每臺小型收割機1小時收割小麥y公頃,根據(jù)“1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃”,即可得出關于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設大型收割機有m臺,總費用為w元,則小型收割機有(10﹣m)臺,根據(jù)總費用=大型收割機的費用+小型收割機的費用,即可得出w與m之間的函數(shù)關系式,由“要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元”,即可得出關于m的一元一次不等式組,解之即可得出m的取值范圍,依此可找出各方案,再結(jié)合一次函數(shù)的性質(zhì)即可解決最值問題.
【考點精析】通過靈活運用一元一次不等式組的應用,掌握1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】若函數(shù)y=x2﹣3|x﹣1|﹣4x﹣3﹣b(b為常數(shù))的圖象與x軸恰好有三個交點,則常數(shù)b的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax+bx-3(a≠0)與x軸交于點
A(-2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點M,使 : =5:2,求M點坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大。
(2)如圖②,當BE=BC時,求∠CDO的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角△ABC中,∠B=30°,點O是△ABC的重心,連接CO并延長交AB于點E,過點E作EF⊥AB交BC于點F,連接AF交CE于點M,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OB=1,以OB為直角邊作等腰直角三角形A1BO,再以OA1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的長度為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進行兩次折疊,展平后,得折痕AD,BE(如圖①),點O為其交點.
(1)探求AO到OD的數(shù)量關系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動點.
(Ⅰ)當PN+PD的長度取得最小值時,求BP的長度;
(Ⅱ)如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知梯形ABCD中,ADBC,AC、BD相交于點O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表.已知購進60雙甲種運動鞋與50雙乙種運動鞋共用10000元
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)超過21000元,且不超過22000元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準備決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com