精英家教網 > 初中數學 > 題目詳情

【題目】如圖,平行于x軸的直線AC分別交函數 y=x(x≥0) y= x(x≥0)的圖象于 B,C兩點,過點Cy軸的平行線交y=x(x≥0)的圖象于點D,直線DEAC y=x(x≥0)的圖象于點E,則=(

A. B. 1 C. D. 3﹣

【答案】D

【解析】

設點A的縱坐標為b, 可得點B的坐標為(,b), 同理可得點C的坐標為(b,b),

D點坐標(b,3b),E點坐標(,3b),可得的值.

:設點A的縱坐標為b, 因為點B的圖象上, 所以其橫坐標滿足=b, 根據圖象可知點B的坐標為(,b), 同理可得點C的坐標為(b,b),

所以點D的橫坐標為b,因為點D的圖象上, 故可得

y==3b,所以點E的縱坐標為3b,

因為點E的圖象上, =3b,

因為點E在第一象限, 可得E點坐標為(,3b),

DE==,AB=

所以=

故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】建立適當的坐標系,運用函數知識解決下面的問題:

如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點E到橋下水面的距離EF3米時,水面寬AB6米,一場大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時水位上升了多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為21,則下列結論正確的是( )

A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將正方形網格放置在平面直角坐標系中,其中每個小正方形的邊長均為1,△ABC經過平移后得到△A1B1C1,若AC上一點P(1.2,1.4)平移后對應點為P1,點P1繞原點順時針旋轉180°,對應點為P2,則點P2的坐標為( 。

A. (2.8,3.6) B. (﹣2.8,﹣3.6)

C. (3.8,2.6) D. (﹣3.8,﹣2.6)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將△OAB繞點O逆時針旋轉80°得到△OCD,點A與點C是對應點.

(1)畫出△OAB關于點O對稱的圖形(保留畫圖痕跡,不寫畫法);

(2)若∠A=110°,∠D=40°,求∠AOD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A是反比例函數y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經過點B的反比例函數圖象的表達式為( 。

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當t為何值時,矩形PQNM的面積最小?并求出最小面積;

②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形網格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。

A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

查看答案和解析>>

同步練習冊答案